植被覆盖度(Fractional vegetation cover, FVC)表示植被地面垂直投影面积与研究区总面积的百分比,是衡量生态保护和生态恢复有效性的重要指标,被广泛应用于气候、生态和土壤侵蚀等领域。FVC不仅是反映植被生产能力的理想参数,而且在评估地形差异、气候变化和区域生态环境质量时也能发挥较好的作用。本研究工作主要是对两套GLASS FVC数据进行后处理,通过数据融合、剔除异常值和剪裁后给出较为可靠的2013年和2018年的环北极圈(范围为北纬66°以北)和青藏高原(范围为北纬26°到39.85°,东经73.45°到104.65°)的植被覆盖度情况。
叶爱中
南极半岛植被数据来源于时空三级环境大数据平台的南极先锋植被覆盖分类数据,通过实测光谱匹配遥感影像,应用纯像元PPI提取出苔藓、地衣、岩石、海、积雪的端元波谱和应用线性混合模型LMM(Linear Mixture Model)计算得到。菲尔德斯半岛特色植被覆盖度根据其与丰度的相关线性关系获得。数据格式为geotiff格式。数据内容是南极半岛典型年典型区植被覆盖度。本研究工作通过对南极半岛典型区典型年植被覆盖度后处理后生成tif栅格格式产品,栅格主体数值为植被盖度。本研究得到的南极半岛典型区植被覆盖度是将南极先锋植物丰度数据产品进行镶嵌,包括南极半岛及周边植物丰度数据产品。通过ArcGIS将南极半岛典型区域包括Adley,北部和南部镶嵌在一起,得到包括2008年、2017年和2018年的光谱角匹配法(SAM)和光谱信息散度法(SID)识别出的6幅植被覆盖度图。
叶爱中
青藏高原被誉为“亚洲水塔”,其提供的径流作为重要的、易获取的水资源,维系着周边数十亿人口的生产生活,支撑着生态系统的多样性。准确估算青藏高原的径流,揭示径流的变化规律,有利于高原及周边地区的水资源管理和灾害风险规避。青藏高原五大河源区冰川径流分割数据集覆盖时间从1971年到2015年,时间分辨率为逐年,覆盖范围为青藏高原五条大江大河源区(黄河源,长江源,澜沧江源,怒江源,雅鲁藏布江源),空间分辨率为流域,以多源遥感和实测数据为基础使用耦合了冰川模块的分布式水文模型VIC-CAS模拟获得,使用站点实测数据对模拟结果进行了验证,其所有数据进行了质量控制。
王世金
青藏高原被誉为“亚洲水塔”,是东南亚众多河流的源区,其提供的径流作为重要的、易获取的水资源,维系着周边数十亿人口的生产生活,支撑着生态系统的多样性。青藏高原五大河源区冰川径流数据集覆盖时间从2005年到2010年,时间分辨率为每5年一期,覆盖范围为青藏高原五条大江大河源区(黄河源,长江源,澜沧江源,怒江源,雅鲁藏布江源),空间分辨率为1km,以多源遥感、模拟、统计和实测数据为基础,使用GIS方法和生态经济学方法结合,量化了江河源区冰冻圈水资源服务的价值,其所有数据进行了质量控制。
王世金
山地冰川是中国西部及其周边地区重要的淡水资源。由于冰川融水在流域尺度为生态和社会经济用水提供补给,因此,确定冰川作用(补给)流域是开展冰川水资源供给功能和服务研究的基础。基于Randolph Glacier Inventory 6.0、中国历次冰川编目、中国三级流域边界数据(中国科学院资源与环境科学数据中心提供)和全球流域边界数据HydroBASINS(www.hydrosheds.org),通过将冰川分布数据与流域边界数据进行相交分析,生成了20世纪50年代至21世纪20年代(至今)(1)中国两级冰川作用流域边界、(2)中国冰川作用的国际河流流域边界以及(3)亚洲高山区冰川作用流域边界数据。该数据兼顾了中国和全球常用流域边界,并将二者很好匹配,以期为中国及其周边地区冰川水资源研究提供基础数据。
苏勃
土壤冻结深度(SFD)是评估冻土区水资源平衡、地表能量交换和生物地球化学循环变化所必需的,是冰冻圈气候变化的重要指标,对季节性冻土和多年冻土都至关重要。 本数据是基于Stefan方程,对CanEMS2 (RCP 45和RCP85)、GFDL-ESM2M (RCP26、RCP45、RCP60和RCP85)、HadGEM2-ES(RCP26、RCP45和RCP85)、IPSL-CM5A-LR(RCP26、RCP45、RCP60和RCP85)、MIROC5(RCP26、RCP45、RCP60和RCP85)和NorESM1-M(RCP26、RCP45、RCP60和RCP85)等多模型不同情景下,利用逐日气温的预测数据及E-factor数据,获得2007-2065年空间分辨率为0.25度,青藏高原区域年平均土壤冻结深度数据集。
潘小多, 李虎
该数据为2020年西藏26个湖泊70个点位浮游植物数据,采样时间为8-9月,采样方式为常规浮游植物采样方式,样品采集1.5升,后经鲁哥氏液固定,静止沉淀后虹吸浓缩后,利用倒置显微镜镜检结果。数据包括硅藻、绿藻、蓝藻、甲藻、裸藻、隐藻、棕鞭藻、黄藻、褐藻和轮藻等10个门类,共计77种/属不同浮游植物的密度数据。该数据为原始数据,未经过处理,单位为个/L。该数据可以用于表征这些湖泊敞水区浮游植物的组成、丰度,也可用于计算这些湖泊中浮游植物群落的多样性。
张民
冰川是西部山区河流的补给水源,是西部地区人们赖以生存、发展工、农、牧业的最基本要素之一。冰川既是宝贵的淡水资源,又是山区形成严重自然灾害的发源地,如突发性冰湖溃决洪水、冰川泥石流和冰崩等。冰川水文监测是研究冰川融水特征、冰川融水对河流的补给作用、冰川表面消融与径流关系、冰面产流和汇流过程、及冰川和季节性积雪融水诱发的洪水和泥石流计算和预报的基础。目前主要以在流域出山口建立水文监测站,开展实地监测为主。本数集为4条代表性冰川的月值径流数据 (珠西沟冰川、帕隆4号冰川、老虎沟冰川、七一冰川)。通过雷达或压力式水位计测量冰川融水相对水位变化,通过实地径流断面测流与相对水位建立径流曲线,计算每条冰川的径流总量,径流单位为m3/s。
杨威, 李忠勤, 王宁练, 秦翔
本数据集为青藏高原区域2002-2020年日分辨率0.00425° x0.00425°地表反照率产品。基于MODIS反射率数据,采用耦合地形因子的多源遥感数据协同反演的BRDF\反照率模型,并引入先验知识进行质量控制,反演时空连续的日分辨率的高精度BRDF/反照率。MODIS地表反射率数据(MOD09GA、MYD09GA)集为官方网站下载,以5天为周期合成日分辨率BRDF,进而估算日分辨率的反照率,其中,黑空反照率的太阳入射为当地正午时太阳入射。经过验证评估,满足反照率应用精度要求,相较于同类产品在山区站点的验证精度更高,且时空连续性更好。可有效支撑青藏高原地区辐射平衡、环境变化研究。
闻建光, 游冬琴, 唐勇, 韩源
沱沱河源区植被类型图是基于 319 个地面采样点数据结合随机森林(RF)分类方法进行创建的。随机森林分类器的16个输入变量包括了Landsat-8的可见光、短波红外和热红外波段值及其反演的植被指数和地表温度数据等。根据研究区的植被特征及多年冻土模拟的需要,该图对高寒沼泽草甸(alpine swamp meadow)、高寒草甸(alpine meadow)、高寒草原(alpine steppe)和高寒沙漠(alpine desert )等4种植被类型进行了分类。图件的空间分辨率为30 m,可以提供更细节的植被类型的位置信息。
邹德富, 赵林, 刘广岳, 杜二计, 胡国杰, 李智斌, 吴通华, 吴晓东, 陈杰
本数据为东南亚地区2015年的地表类型数据,空间分辨率为30米,数据类型为NetCDF,变量名为“land cover type”。该数据基于FROM-GLC数据加工而成,通过对原始影像的拼接、裁剪得到覆盖东南亚的地表类型数据,剔除东南亚地区不存在的雪冰等下垫面类型并重新整合图例。修改下垫面类型编码生成包含东南亚的地表类型数据。该数据提供耕地、森林、草地、灌木、湿地、水体、不透水面、及裸地共8种下垫面的信息。数据总体精度为71% (Gong et al., 2019),可为水文模型、区域气候模式等提供东南亚地区的下垫面信息。
刘俊国
采用三种广泛使用的基于模型的蒸散发数据集,包括ERA5,MERRA2和GLDAS2-Noah再分析数据,使用变异系数选取具有高一致性的融合区域,基于可靠性集合平均法融合获得了空间分辨率为0.25°的长序列(1980-2017年)全球逐日蒸散发产品(REA ET)。以GLEAM3.2a和通量塔观测数据作为参考数据和验证数据,结果表明,融合产品很好地捕捉了不同地区的蒸散发趋势,在所有植被覆盖情景下表现良好。数据集以NetCDF格式存储,包含变量E,代表陆地实际蒸散发,以毫米(mm)为单位。数据集包含三个维度:经度、纬度和时间,经度范围为-179.875E~179.875E,纬度范围为-59.875N~89.875N。完整时间覆盖范围为1980年1月1日~2017年12月31日。
陆姣, 王国杰, 陈铁喜, 李世杰, Daniel Fiifi Tawia Hagan, Giri Kattel, 彭建, 姜彤, 苏布达
本数据集是一个包含接近35年(1984-2018)的全球高分辨率光合有效辐射数据集,其分辨率为3小时/逐日/逐月,10公里,数据单位为W/㎡,瞬时值。该数据集可用于生态过程模拟和全球碳循环的理解。该数据集是基于改进的物理参数化方案并以ISCCP-HXG云产品、ERA5再分析数据、MERRA-2气溶胶数据以及MODIS反照率产品为输入而生成的。验证并和其他全球卫星辐射产品比较表明,该数据集的精度通常比CERES全球卫星辐射产品的精度要高。该全球辐射数据集将有助于未来生态过程模拟的研究和全球二氧化碳通量的估算。
唐文君
降雨侵蚀力是量化青藏高原土壤侵蚀的重要基础数据之一。高精度的降雨侵蚀力数据是了解目前青藏高原水土流失现状,以及制定水土保持措施的关键,同时可以为青藏高原地质灾害防治提供有力参考。本研究基于青藏高原1-min稠密降水观测数据和高精度格点降水资料,经过订正、重构和检验等步骤,构建了一套新的青藏高原1950~2020年逐年降雨侵蚀力数据集。该数据集是目前青藏高原精度最高、时间序列最长的降雨侵蚀力数据集。
陈悦丽
本数据集为覆盖全球范围考虑积融雪过程的标准化水分距平指数(SZIsnow),该干旱指数数据集由GLDAS-2驱动产生。该指数考虑了与干旱发展相关的诸多水文过程,尤其是积融雪过程。目前许多干旱指数忽略了积融雪过程,导致不能准确地对积雪地区干旱的发生和发展进行评估,该指数很好地弥补了这一不足,解决了干旱物理机制解析与多时间尺度分析无法兼顾,不同类型干旱难以统一评估的两个难题。经验证该指数能够很好地对全球不同地区的历史干旱时间进行定量描述,其优异表现在高纬度和高海拔地区更为突出。因此本数据集可以为干旱的监测评估以及干旱相关研究提供科学参考。
吴普特, 田磊, 张宝庆
基于遥感的全球表层土壤水旬度数据集(RSSSM,2003~2020)是在世界11种常用的全球微波遥感土壤水数据产品基础上,采用神经网络方法,融入了9个微波遥感反演土壤水分的质量影响因子完成。数据空间分辨率是0.1度,时间分辨率为旬。原数据覆盖2003~2018年,现更新至2020年。RSSSM数据集的时间连续性突出,除冰雪和水体外实现空间全覆盖。通过全球实测数据进行检验,可证明RSSSM数据集较已有的常用全球或区域长时间序列表层土壤水产品具有更高的时空格局精度。此外,虽然RSSSM数据是基于遥感的,未融合任何降水资料,但其年际变异与降水量(如GPM IMERG降水数据)和标准化降水蒸散发指数(SPEI)的时间变异均可较好地吻合。RSSSM数据还可一定程度反映城市化、农田灌溉、植被恢复等人类活动对土壤水分的影响。数据为tiff格式,压缩后的数据量为2.48 GB。 数据论文于2021年发表在Earth System Science Data。
陈永喆, 冯晓明, 傅伯杰
地表土壤水分(SSM)是了解地球表面水文过程的关键参数。长期以来,被动微波(PM)技术一直是在卫星遥感尺度上估算SSM的主要选择,而另一方面,PM观测的粗分辨率(通常>10 km)阻碍了其在更细尺度上的应用。虽然已经提出了定量研究,以缩小基于卫星PM的SSM的规模,但很少有产品可供公众使用,以满足1km分辨率和全天候条件下每日重访周期的要求。因此,在本研究中,我们在中国开发了一种具有所有这些特征的SSM产品。该产品是通过在36 km处对基于AMSR-E和AMSR-2的SSM进行降尺度生成的,涵盖了2003-2019年间两台辐射计的所有在轨时间。MODIS光学反射率数据和在多云条件下填补空白的每日热红外地表温度(LST)是降尺度模型的主要数据输入,以实现SSM降尺度结果的“全天候”质量。4月至9月期间,这一开发的SSM产品的每日图像在全国范围内实现了准完全覆盖。在其他月份,与最初的每日PM观测值相比,开发产品的全国覆盖率也大大提高。我们根据2000多个专业气象和土壤水分观测站的现场土壤水分测量结果对该产品进行了评估,发现该产品的精度在晴空到多云的所有天气条件下都是稳定的,无偏RMSE的站平均值在0.053 vol到0.056 vol之间。此外,评估结果还表明,开发的产品在1km分辨率下明显优于广为人知的SMAP Sentinel(主被动微波)组合SSM产品。这表明,我们开发的产品在改善未来水文过程、农业、水资源和环境管理相关调查方面可能带来的潜在重要效益。
宋沛林, 张永强
该数据集主要包括北温带湖泊在1985-2020年间4个时段的结冰观测频率值(ICO),以及湖泊所在位置、面积、高程等信息。其中,4个时间段分别为1985-1998(P1)、1999-2006(P2)、2007-2014(P3)以及2015-2020(P4),目的是提高计算时段内的“有效观测”次数,进而提高准确度。4个时段的ICO由各个时段内所有Landsat影像统计的“结冰”次数与“有效观测”次数的比值计算,其他的湖泊信息通过表格中的“Hylak_id”列与HydroLAKEs数据集相对应。此外,该数据仅保留了P1-P4均观测有效,且面积大于1平方千米的湖泊,约为3万个。该数据集可以反映近几十年来湖泊结冰情况对气候变化的响应。(详见论文)
王欣驰
本数据集为全球高精度高程控制点数据集,包含各个高程控制点地理定位,高程,采集时间等信息。 从卫星激光测高数据中提取的激光足印高程的精度受到许多因素的影响,如大气、有效载荷仪器噪声、激光足迹中的地形起伏等,导致精度不确定。该数据集通过评估标签和测距误差模型所构建的筛选准则对ICESat卫星从2003年到2009年的测高观测数据进行筛选提取,以期地形测图或依赖良好高程信息的其他科学领域提供高精度的全球高程控制点。经验证,平地(坡度<2°)、丘陵(2°≤坡度<6°)、山地(6°≤坡度<25°)区域的高程精度分别满足0.5m、1.5m、3m的精度要求。
谢欢, 李彬彬, 童小华, 唐鸿, 刘世杰, 金雁敏, 王超, 叶真, 陈鹏, 许雄, 柳思聪, 冯永玖
新的北半球多年冻土图利用基于规则的GIS模型融合了新的多年冻土范围(Ran et al., 2021b)、气候条件、植被结构、土壤和地形条件以及富冰和富含有机质多年冻土图(yedoma)。与之前的多年冻土图不同,根据多年冻土与气候和生态系统的复杂交互作用,我们将北半球多年冻土分为五种类型:气候驱动型、气候驱动型/生态系统改造型、气候驱动型/生态系统保护型、生态系统驱动型和生态系统保护型。除去冰川和湖泊,北半球这五种类型的面积分别为3.66×106km2、8.06×106km2、0.62×106km2、5.79×106km2和1.63×106km2。北半球81%的多年冻土区受到生态系统的改造、驱动或保护,表明生态系统在北半球多年冻土稳定性中的主导作用。气候驱动的多年冻土只占北半球多年冻土区的19%,主要分布在高北极和高山地区,如青藏高原。
冉有华, M. Torre Jorgenson, 李新, 金会军, 吴通华, 李韧, 程国栋
充分了解中国温带半干旱草地蒸散发的时空变化,可以提高我们对全球半干旱区气候、水文和生态过程的认识。本研究基于区域内13个站点的涡度相关系统观测数据,结合气象及遥感数据,利用机器学习方法(支持向量机),生产了年限为1982-2015年,空间分辨率为1km,时间分辨率为8天的长序列中国温带半干旱草地蒸散发数据集。该数据集在站点实测数据的验证和流域水量平衡的对比中,均表现较好。(详细过程请参阅参考文献)
雷慧闽
地表温度(Land Surface Temperature,LST)是地表能量平衡研究的关键参数,被广泛用于气象、气候、水文、农业和生态等领域研究。卫星(热红外)遥感作为获取全球和区域尺度LST信息的重要手段,容易受到云层覆盖和其他大气条件的影响,导致LST遥感产品时空不连续,极大限制了LST遥感产品在相关研究领域的应用。 本数据集的制备首先基于经验正交函数插值方法,利用Terra/Aqua MODIS 地表温度产品重建理想晴空条件下的LST,然后使用累积分布函数匹配方法融合 ERA5-Land再分析数据获取全天候条件下的LST。该方法充分利用了原始MODIS遥感产品的时空信息以及再分析数据中的云影响信息,缓解了云层覆盖对LST估算的影响,最终重建得到较高质量的全球0.05°时空连续的理想晴空和全天候LST数据集。 本数据集不仅实现了时空无缝覆盖,并且具有良好的验证精度。重建的理想晴空LST数据在全球17种土地覆盖类型实验区内,平均相关系数(R)为0.971,偏差(Bias)为-0.001 K至0.049 K,均方根误差(RMSE)为1.436 K至2.688 K。重建的全天候 LST 数据与地面站点实测数据的验证结果:平均 R 为 0.895,Bias为0.025 K 至 2.599 K, RMSE为4.503 K至7.299 K。 本数据集的时间分辨率为逐日4次,空间分辨率为0.05°,时间跨度为2002年-2020年,空间范围覆盖全球。
赵天杰, 余沛
This is a dataset of shrubline shifts and recruitment including 24 willow shrubline plots on the eastern Tibetan Plateau. It includes the following information: 1) Shrub recruitment series; 2) Climatic sensitivity of shrub recruitment; 3) Shrubline shifts and their potential drivers.
Yafeng Wang, Eryuan Liang
该数据集为发源于青藏高原的黄河流域水文站河水的季节性水文观测数据。共两个水文站:1、黄河中游龙门水文站,为2013年逐周水文数据,包括水温(T)、径流量(Qw)、物理侵蚀速率(PER)、pH。2、黄河唐乃亥水文站,为2012年7月至2014年6月河水逐月数据,包括径流量(Qw)、泥沙量(silt)、pH、EC。该数据集委托黄河水利委员会水文站工作人员观测,为青藏高原隆升背景下水文学、水化学、水圈循环等研究提供基础水文资料。
金章东, 赵志琦
青藏高原土壤温湿度观测网(Tibet-Obs)始建于2008年,包括玛曲、那曲、阿里和狮泉河四个站网,目前已连续运行超过十年,并被NASA的土壤水分主被动卫星SMAP选定为其产品的地面验证点,促进了青藏高原遥感产品和模型模拟的评估和改进。本研究详细梳理了各观测站网的现状及其应用情况,并基于已有观测数据发展了一套长时序(2009-2019)地表土壤湿度(5 cm)观测数据集,主要包含四个站网各站点的15分钟原始观测数据以及玛曲和狮泉河站网的升尺度区域土壤湿度数据。
张佩, 郑东海, 文军, 曾亦键, 王欣, 王作亮, 马耀明, 苏中波
1)数据内容:本数据集包含从1980s-2019年青藏高原地区Landsat长时序NDWI产品。2)数据来源及加工方法:主要是在青藏高原Landsat系列卫星地表反射率数据集的基础上,通过NDWI的计算公式进行生产的,即利用绿光波段和近红外波段的差异比值来增强水体信息,并减弱植被、土壤、建筑物等地物的信息;3)数据质量描述:为了标识云、冰雪,并相应生产了质量标识文件(QA)。4) 数据应用成果及前景:该指数便于地表水体信息有效提取,广泛应用于水资源、水文以及林农业等领域。
彭燕
本数据为祁连山地区2020年冰川分布产品。采用经典波段比值法和人工修正的方法提取。原始基础数据为2020年祁连山全境的高分系列影像。参考数据为谷歌影像和天地图影像。产品以shp文件格式存储,包含坐标系、冰川ID、冰川面积等属性。产品为1期,空间分辨率为2米,边界精度在2米(一个像元)左右。该数据直观地反映了祁连山冰川在2020年的分布,可用于冰川物质平衡变化定量估计、冰川变化对流域径流量影响定量估计等研究。
李佳
数据内容:该数据集产品包含青藏高原地区10米分辨率的不透水面产品,可作为青藏高原地区生态系统相关研究的关键参数。数据来源及加工方法:产品反演主要基于Sentinel系列数据,从联合特征出发,结合深度空间特征、长时序的NDVI等指数特征、地形特征,采用随机森林模型实现不透水面信息提取。数据质量:整体精度较高。数据应用成果及前景:数据集将持续更新,可用于进一步明晰人类活动对青藏高原地区生态系统的影响。
王桂周
Based on AVHRR-CDR SR products, a daily cloud-free snow cover extent dataset with a spatial resolution of 5 km from 1981 to 2019 was prepared by using decision tree classification method. Each HDF4 file contains 18 data elements, including data value, data start date, longitude and latitude, etc. At the same time, to quickly preview the snow distribution, the daily file contains the snow area thumbnail, which is stored in JPG format. This data set will be continuously supplemented and improved according to the real-time satellite remote sensing data and algorithm update (up to may 2019), and will be fully open and shared.
HAO Xiaohua
冰川是西部山区河流的补给水源,是西部地区人们赖以生存、发展工、农、牧业的最基本要素之一。冰川既是宝贵的淡水资源,又是山区形成严重自然灾害的发源地,如突发性冰湖溃决洪水、冰川泥石流和冰崩等。冰川水文监测是研究冰川融水特征、冰川融水对河流的补给作用、冰川表面消融与径流关系、冰面产流和汇流过程、及冰川和季节性积雪融水诱发的洪水和泥石流计算和预报的基础。目前主要以在流域出山口建立水文监测站,开展实地监测为主。本数集为4条代表性冰川的月值径流数据 (珠西沟冰川、帕隆4号冰川、老虎沟冰川、七一冰川)。通过雷达或压力式水位计测量冰川融水相对水位变化,通过实地径流断面测流与相对水位建立径流曲线,计算每条冰川的径流总量,径流单位为m3/s。
杨威, 李忠勤, 王宁练, 秦翔
北极大河流域地面气象要素驱动数据集,包括地表日最大、最小及平均气温、日降水量、日均风速共5个要素。数据为NETCDF格式,水平空间分辨率约为0.1度(0.083°),范围包括了Yenisy、Lena、Ob、Yukon及Mackenzie流域,该数据可为北极大河流域水文过程模拟提供驱动数据。利用进一步质量控制的全球历史气候网数据集(GHCN)、全球日气象数据集(GSOD)、美国历史气候网数据集(USHCN)、加拿大气候数据集(AHCCD)、前苏联/俄罗斯气候数据集(USSR/Russia)的气象站点日观测数据,以ClimateNA(北美)、Worldclim(欧亚)数据作为背景场,采用薄板样条函数插值方法生成。
赵求东, 吴玉伟
在青海和西藏的荒漠带实地调查了52个样点,于2019年和2020年7-8月植被生长最大时期对植被地上生物量进行实地采样。同时,利用手持 GPS设备,记录了实验位点的经度、纬度和海拔等信息。样方的野外设置方法为:选取一块植被均匀的地段,当植被相对茂盛时样地设置为10米x10米的正方形样地,当植被相对稀疏时样地设置为30米x30米的正方形样地或者30米x90米的长方形样地;在设置好的样地中随机投掷3-5个小样方框(1米x1米),采用样方收割法收集植物样品:在1平方米的样方面积内,登记植物的物种名目,每个物种的株数等信息。并将样方内的各种植物分种齐地面刈割,带回实验室内, 在恒温干燥箱内65℃条件下烘干至恒重, 测定植物样本的干重,计算样方地上生物量。 此外,还通过采样点的经度纬度提取了该52个样点的2种遥感净初级生产力数据。(1) 2000-2018年的增强型植被指数(EVI),并计算年整合增强型植被指数(iEVI),iEVI与净初级生产力(NPP)具有高相关性,可作为净初级生产力的替代指标(He et al. 2021, Science of The Total Environment)。(2) 2001-2020年遥感净初级生产力(NPP)及其质量控制百分比(QC),遥感NPP数据来自MOD17A3HGF Version 6 product (https://lpdaac.usgs.gov/products/mod17a3hgfv006/),由净光合值(总初级生产力-植物维持呼吸)计算得到。植被覆盖度低的样点,遥感净初级生产力可能存在空值(NA)。
叶建圣
青海省湖泊储水总量实测和模拟数据集中包含四个子表:第一个子表是根据遥感影像数据监测得到2000年至2019年的时序湖泊面积数据;第二个子表是结合时序湖泊面积数据和面积-库容方程进行估算的结果;第三个子表存储基于湖泊水下三维模拟模型模拟得到湖泊的面积-容积方程;第四个子表为青海省24个典型湖泊储水量实测和模拟关键参数与结果数据,其中包含每个湖泊的模拟水深、最大水深、模拟时的参考水位与对应的湖泊面积。
方纯, 卢善龙, 鞠建廷, 唐海龙
数据包括青藏高原与西北干旱区33个湖泊表层沉积物中植物DNA的原始测序文件。我们使用德国Qiagen公司的PowerMax土壤试剂盒提取DNA,并采用通用植物引物g-h (Taberlet et al., 2007) 对样品中叶绿体trnL (UAA) 内含子区的P6环进行PCR扩增,PCR产物随后送至瑞士Fasteris公司进行第二代高通量双端测序,测序仪器为Illumina NextSeq 550。数据质量分数Q30为81.97。
刘兴起, 贾伟瀚
湖泊盐度是湖泊水环境的重要参数,是水资源的重要体现,也是气候变化研究的重要组成部分。本数据基于实测获取的青藏高原湖泊盐度数据,其中盐度以实用盐度单位(psu)进行表征,该盐度值使用电导率传感器测量获得的比电导率(SpC)转换得到。使用Arcgis软件将测量数据转化为空间矢量.shp格式,得到实测盐度空间分布数据文件。该数据可作为地区湖泊环境、水文、水生态、水资源等科学研究的基础数据以及相关研究参考。
朱立平
本数据集提供青藏高原124个湖泊实测水质参数,湖泊总面积为24,570 平方千米,占青藏高原湖泊总面积的53% 。实测湖泊水质参数包括水温、盐度、pH、叶绿素a浓度、蓝绿藻(BGA)浓度、浊度、溶解氧(DO)、荧光溶解有机物(fDOM)和水体透明度(SD)。测量方法中,盐度使用电导率是传感器测量获得的比电导率(SpC)转换得到,叶绿素a和蓝绿藻(BGA)浓度使用总藻类荧光传感器测量,温度使用温度传感器测量,pH使用pH传感器测量,溶解氧(DO)使用光学溶解氧传感器测量,fDOM使用荧光传感器测量,单位是硫酸奎宁单位(QSU),浊度使用浊度传感器测量,以Formazin比浊法为单位(FNU)。上述传感器测量获取的参数均使用YSIEXO或HACH多参数水质仪测量,测量时,传感器位于湖面以下约10-20厘米处。湖泊水体透明度使用塞氏盘测量法进行测量。
朱立平
数据由三个字段组成:经度、纬度和湖泊深度。利用声呐设备在湖泊上走航测量得到的水深数据,GPS同步测量得到的经度和纬度。利用湖水盐度和温度数据校正声呐测得的深度数据,并剔除数据异常点。利用水深数据可以插值形成湖泊水下地形图。利用水下地形图可以计算湖泊的储水量,评估青藏高原湖泊总水量。利用水下地形图结合遥感数据还可以研究青藏高原湖泊水量变化特征及其影响因素,是亚洲水塔水量变化研究的重要组成部分。
朱立平
1)数据内容 包括采样点的观测年份、经纬度、海拔、生态系统类型、不同土层(SOC0-100 (kg Cm-2); 0-100代表土层)、地下生物量含量。 2)数据来源 此部分数据是从文献中获取,具体文献来源参考说明文档。 3)数据质量描述 数据观测覆盖范围广,包含指标全面,展示了不同土层下的土壤有机碳含量,具有较高的完整性和精确性,能满足对青藏高原草地土壤碳储量的估算。 4)数据应用成果及前景 为预测未来青藏高原土壤的碳源–汇效应及实现生态系统碳可持续发展提供基础数据。
胡中民
1)数据内容 包括采样点的观测年份、经纬度、生态系统类型、年降雨量、干旱指数、年净初级生产力、地上生物量、地下生物量等数据。 2)数据来源 一部分来源于文献(1980-1995),另一部分来源于实地采样(2005-2006)。 3)数据质量描述 数据观测年份长,时间跨度大,覆盖范围广,包含指标多,具有较高的完整性和精确性,能满足对青藏高原草地植被碳储量的估算。 4)数据应用成果及前景 为预测未来青藏高原的碳源–汇效应及实现生态系统碳可持续发展提供基础数据。
胡中民
泛第三极区域数据集呈现海量、零散等特征,现有数据集种类较多,覆盖范围广,涉及水文、生态、大气以及灾害等多个领域,但这些数据集来自不同平台,在尺度、数据格式等方面各不相同,数据的可利用性较差,不利于科研人员展开泛第三极地区的科学研究,同时也无法发挥出这些数据集的巨大潜力。本研究采用来自多个数据平台的最新数据使用数据集成、数据融合等集成方法生产更高质量和更新年份的泛第三极综合数据集。根据不同来源、不同分辨率的数据,对这些数据进行质量控制,根据数据科学内容进行集成。对部分数据,利用数据融合技术,融合不同来源的数据,产生数据质量更高、年份更新的创新性数据产品,更好地服务于陆面过程模型等研究中。泛第三极数据集根据自然数据和社会经济数据分别采用泛第三极流域边界和泛第三极国家边界获取数据,统一采用罗宾逊(Robinson)投影格式。获得了多源集成的包含基础数据集、冰冻圈数据集、水文大气数据集、生态数据集、灾害数据集和人文地理数据集共六类数据集。 (1)基础数据集包含边界数据集、30米土地覆被数据、植被功能数据、30米SRTM数字高程数据和HWSD土壤质地数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极基础数据集数据文档.docx”。 (2)冰冻圈数据集包含冻土数据集、冰川分布数据、冰湖分布数据和积雪深度数据。其中,冻土数据集又包含冻土分布数据、冻土水热分带数据、冻土指数数据和冻土表面粗糙度数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极冰冻圈数据集数据文档.docx”。 (3)水文大气数据集包含河流湖泊数据集、蒸散发数据集和大气数据集。河流湖泊数据集包含河流数据和湖泊数据,蒸散发数据集包含MODIS蒸散发数据、土壤蒸发数据、水体冰雪蒸发数据和冠层截流蒸发数据,大气数据集包含ERA5-Land再分析数据集中的地表热辐射数据、地表太阳辐射数据、降水数据、气压数据、温度数据和风场数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极水文大气数据集数据文档.docx”。 (4)生态数据集包含总初级生产力数据和植被蒸腾数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极生态数据集数据文档.docx”。 (5)灾害数据集包含滑坡数据和地震区划数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极灾害数据集数据文档.docx”。 (6)人文地理数据集则包含交通道路数据、铁路机场数据、人口密度数据、主要国家人均GDP数据、收入水平数据和世界遗产分布数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极人文地理数据集数据文档.docx”。 泛第三极综合数据集将为相关研究者提供便利,避免相关研究在获取数据和处理数据的过程中重复劳动,节省研究者宝贵的时间,并且在陆面过程模型、水文模型和生态模型等科学研究中起到重要作用,促进泛第三极地区科学研究的发展,为泛第三极地区的科学研究提供数据支撑。
李虎, 潘小多, 李新, 盖春梅, 冉有华
该数据集包含位于西藏自治区昌都市江达县岗托镇矮拉山附近(98°29′16″E, 31°36′36″N)冻融滑坡及融冻泥流浅层地温、水分及现场气象要素监测数据,基于Hobo温度、水分及小型气象站通过现场监测获得。观测时间在2019年8月31日-2020年7月14日之间。通过一个完整冻融周期的现场监测,下载现场传感器自动获取的地温、水分及气象要素监测数据,通过一定的质量控制包括剔除传感器未完全适应土壤环境时的数据和传感器出现故障造成的系统误差。地温、水分观测时间间隔4小时,地温的观测深度为10cm, 20cm, 40cm, 60cm,80cm,100cm,150cm及200cm,共8层,水分的观测深度为20cm,50cm,100cm及200cm共4层。气象观测要素主要包括气温、降雨量、风速、风向及太阳辐射等,观测的时间间隔为30分钟(注:太阳辐射传感器最大量程为1276.8 W/m2,实际太阳辐射值大于最大量程时显示为1276.9 W/m2;风速传感器的最小启动风速为0.5m/s,当实际风速小于启动风速时,显示值为0。因此该数据无法体现超太阳常数现象和低于0.5m/s的风速)。质量控制包括剔除传感器未完全适应土壤环境时的数据和传感器出现故障造成的系统误差。经过矫正的最终数据以excel文件存储。获取的现场数据经多人复查审核,数据完整性和准确度达到95%以上。监测数据可为后期开展藏东南地区冻融滑坡和融冻泥流相关研究工作提供必要的数据支撑。
牛富俊
This file contains the datasets used in a manuscript published in JGR Biogeosciences (Nieberding, F., Wille, C., Ma, Y., Wang, Y., Maurischat, P., Lehnert, L., and Sachs, T.: Winter daytime warming and shift in summer monsoon increase plant cover and net CO2 uptake in a central Tibetan alpine steppe ecosystem, Journal of Geophysical Research: Biogeosciences, 126, e2021JG006441, doi:10.1029/2021JG006441, 2021.). The manuscript contains all the details on how the data was generated and processed and the corresponding code was published in the supplementary material.
Felix Nieberding, 马耀明, Christian Wille, Lukas Lehnert, Yuyang Wang, Philipp Maurischat, Weiqiang Ma, Torsten Sachs
数据内容:该数据集产品包含青藏高原地区30米分辨率的不透水面产品,可作为青藏高原地区生态系统相关研究的关键参数。数据来源及加工方法:产品反演主要基于Landsat系列数据,从联合特征出发,结合深度空间特征、长时序的NDVI等指数特征、地形特征,采用随机森林模型实现不透水面信息提取。数据质量:整体精度较高,多数地区优于80%。数据应用成果及前景:数据集将持续更新,可用于进一步明晰人类活动对青藏高原地区生态系统的影响。
王桂周
地上生物量(Aboveground biomass,AGB)是衡量生态系统生产力的一个重要指标。该数据集提供了2015年青藏高原地区30m分辨率的森林地上生物量。该生物量数据采用Landsat系列数据,基于地面实测数据和部分文献资料,同时结合森林树高数据,森林类型分类(包括针叶林、阔叶林和混合林)等估算而成。通过数据公开和免费下载服务的方式,为青藏高原森林生态系统动态变化的相关研究提供基础数据支持,也为该地区森林的可持续管理提供科学依据。
张晓美
光合有效辐射吸收系数(FPAR)是碳循环研究的一个关键生理变量,被认为是表述植被生态系统的基本变量之一。基于30米空间分辨率的LANDSAT反射率数据,得到青藏高原区域的地表植被类型分类结果,根据不同植被类型NDVI值差异,构建遥感反演模型生产各植被类型的生长季FPAR产品。光合有效辐射吸收系数(FPAR)产品可以用来作为参数之一计算植被固碳量,评价植被生态系统状态等,广泛用于生态环境、林业等领域。该数据集投影坐标信息为经纬度WGS84。
彭代亮
1)数据内容:本数据集包含从1980s-2019年青藏高原地区Landsat长时序地表反射率产品,是很多地表地球物理参数(如叶面积指数、叶绿素和生物量)反演的关键输入参数。2)数据来源及加工方法:所采用的数据源主要来自中国卫星遥感地面站接收存档的Landsat四级产品,青藏高原地区地表反射率产品是基于6S辐射传输模型和MODIS大气产品进行逐像元大气校正,并在此基础上采用C因子法进行BRDF校正得到的;3)数据质量描述:几何精度为RMSE小于等于12m,地表反射率的精度为RMSD低于5%。4) 数据应用成果及前景:在森林、水资源、气候变化等领域长时序信息挖掘分析方面具有重要的应用价值。
彭燕
本数据集包含2019-2021年青藏高原10条科考线路土壤样品的理化性质数据,包括采集人、采集时间、采集地点、经纬度、海拔、植被类型、取样深度、土壤含水量、pH、有机质含量、总碳含量、全氮含量、全磷含量、无机氮含量、重金属元素含量等信息。各项土壤性质的分析参考《土壤环境质量监测技术规范》的要求,通过室内化验分析获得的一手数据,数据质量通过测定空白样品、重复样品和标准样品进行统一控制。该数据集可用于气候变化和人类活动影响下土壤质量和功能评价。
张丽梅
地表温度(Land surface temperature, LST)是地球表面与大气之间界面的重要参量之一。它既是地表与大气能量交互作用的直接体现,又对于地气过程具有复杂的反馈作用。因此,地表温度不仅是气候变化的敏感指示因子和掌握气候变化规律的重要前提,还是众多模型的直接输入参数,在许多领域有广泛的应用,如气象气候、环境生态、水文等。伴随地学及相关领域研究的深入和精细化,学术界对卫星遥感的全天候地表温度(All-weather LST)具有迫切的需求。 本数据集的制备方法是一种基于新型地表温度时间分解模型的卫星热红外遥感-再分析数据集成方法。方法的主要输入数据为Aqua MODIS LST产品和GLDAS等数据,辅助数据包括卫星遥感提供的植被指数、地表反照率等。方法充分利用了卫星热红外遥感和再分析数据提供的地表温度高频分量、低频分量以及地表温度的空间相关性,最终重建得到较高质量的全天候地表温度数据集。 评价结果表明,本数据集具有良好的图像质量和精度,不仅在空间上无缝,还与当前学术界广泛采用的逐日1 km Aqua MODIS LST产品在幅值和空间分布上具有较高的一致性。当以MODIS LST为参考时,该数据集在白天和夜间的平均偏差(MBE)为0.08K至0.16K,偏差标准差(STD)为1.12K至1.46K。基于分布于黑河流域、东北、华北和华南地区的15个站点实测数据的检验结果表明,其MBE为-0.06K至-1.17K,RMSE为1.52K至3.71K,且在晴空与非晴空条件下无显著区别。 本数据集的时间分辨率为逐日2次,空间分辨率为1km,时间跨度为2000年-2021年(注:通过外推方式将缺少Aqua MODIS LST产品时段内的全天候地表温度补齐);空间范围包括我国陆域的主要区域(包含港澳台地区,暂不包含我国南海诸岛)及周边区域(72°E-135°E,19°N-55°N)。本数据集的缩写名为TRIMS LST(Thermal and Reanalysis Integrating Moderate-resolution Spatial-seamless LST),以便用户使用。需要说明的是,TRIMS LST的空间子集TRIMS LST-TP(中国西部逐日1 km全天候地表温度数据集(TRIMS LST-TP;2000-2021)V2)同步在国家青藏高原科学数据中心发布,以减少相关用户数据下载和处理的工作量。
周纪, 张晓东, 唐文彬, 丁利荣, 马晋, 张旭
陆地实际蒸散发(ETa)是陆地生态系统的重要组成部分,它连接着水文、能量和碳循环。然而,准确监测和理解青藏高原(TP)实际蒸散发(ETa)的时空变化仍然非常困难。在此,利用MOD16-STM模型,在土壤属性、气象条件和遥感数据集的支持下,对青藏高原多年(2000-2018年)月度ETa进行了估算。估算出的ETa与9个通量塔的测量结果相关性非常好,均方根误差(平均RMSE=13.48 mm/月)和平均偏差(平均MB=2.85 mm/月)较低,相关系数(R=0.88)和一致性指数(IOA=0.92)较高。2000年至2018年,整个TP和东部TP(Lon>90°E)的空间平均ETa显著增加,增速分别为1.34 mm/年(P<0.05)和2.84 mm/年(P<0.05),而西部TP(Lon<90°E)未发现明显趋势。ETa及其组分的空间分布不均匀,从东南向西北TP递减。东部ETa呈显著上升趋势,西南部ETa全年呈显著下降趋势,尤其是冬春两季。土壤蒸发(Es)占总ETa的84%以上,其时间趋势的空间分布与年平均ETa相似。春季和夏季的ETa变化幅度和速率最大。陆表ETa的多年平均年值(面积2444.18×10^3 km2)为376.91±13.13 mm/年,相当于976.52±35.7 km3/年。整个TP(包括所有高原湖泊,面积2539.49×10^3 km2)的年平均蒸发水量约为1028.22±37.8 km3/年。新的ETa数据集有助于研究土地覆被变化对水文的影响,有助于对整个TP的水资源管理。
马耀明, 陈学龙, 袁令
本数据集是2019年9月川藏铁路沿线典型植被无人机高光谱观测数据,使用的是大疆M600 Resonon成像系统的机载光谱仪。包括2019年在拉萨的草原区域观测的高光谱数据,自带经纬度。高光谱调查时基本为晴天。飞行前进行了白板校准;采集数据时设有靶标(即适于草地的标准反光布),用于光谱校准;设有地面标志点(即有字母的泡沫板照片),并记录了每个标志点的经纬度坐标,用于几何精确校准。无人机高光谱相机记录的dn值,可使用Spectronon Pro软件转换为反射率。高光谱数据用于提取不同植被类型光谱特征、植被分类、反演植被覆盖度等。
周广胜, 汲玉河, 吕晓敏, 宋兴阳
本数据包括北极Barrow地区不同年龄冻土土壤细菌物种组成数据,可用来探索土壤微生物对冻土消融的响应及不同年龄冻土的土壤细菌差异;本数据为扩增子测序结果,引物为Earth Microbiome Project 标准引物 515F–806R,扩增范围为V4区,测序平台为Illumina Hiseq PE250; 数据通过质量控制,至少达到Q30水平;本数据用于发表于Cryospshere文章Permafrost thawing exhibits a greater influence on bacterial richness and community structure than permafrost age in Arctic permafrost soils. The Cryosphere, 2020, 14, 3907–3916, https://doi.org/10.5194/tc-14-3907-2020。本数据还可用于三极土壤微生物比较分析研究
孔维栋
农业灌溉需要消耗大量的可利用淡水资源,是人类对自然水循环过程最直接的扰动,加速了区域水循环的同时伴随着冷却作用。因此,估算灌溉用水对于探索人类活动对自然水循环的影响、量化水资源收支、优化农业水资源管理配置等具有重要意义。然而,目前灌溉用水数据主要是基于调查统计结果,数据空间分布离散且缺乏统一性,无法满足对灌溉用水的时空变化进行估算的需求。全球灌溉农田灌溉用水量遥感估算数据集(2011-2018)是基于卫星土壤湿度、降水、植被指数以及气象资料入辐射与气温等要素,通过土壤水量平衡原理,耦合遥感蒸散发过程模块以及利用基于差分优化的数据-模型融合算法来估算全球灌溉农田实际灌溉用水量。该数据集的灌溉用水估算结果相比传统的离散调查统计数据在不同空间尺度(区域、州/省和国家)上具有较小的偏差,如中国各省2015年农业用水统计结果对比(bias = −3.10 km^3),美国各州2013年调查数据结果对比(bias = −0.42 km^3)以及粮农组织各个国家尺度对比结果(bias = −10.84 km^3)。而且,相较于基于单个降水和土壤水分卫星产品的估算结果,该集合数据显示出更低的不确定性。此外,数据统一采用全球地理经纬度格网,相关元数据存储在对应的NetCDF文件内,空间分辨率约为25公里,时间分辨率为月尺度,时间跨度为2011年−2018年。该数据集将有助于定量评估历史时期农业灌溉用水的时空格局和支撑科学农业用水管理等。
张琨, 李新, 郑东海, 张凌, 朱高峰
本数据集包含青藏高原东部玛曲县一个流域的钻孔岩性数据,高程数据,土壤厚度和地表坡度数据,水文地质调查数据,和物探数据。钻孔岩性数据来源于2017年钻孔 ITC_Maqu_1;高程数据来源于2019年RTK测量;土壤厚度和地表坡度数据来源于2018年和2019年螺旋钻和坡度仪测量;水文地质调查包括2018年和2019年的地下水位埋深测量数据,和2019年的含水层测试数据;物探数据包括2018年的MRS核磁共振数据、ERT电阻率成像数据,和2019年的TEM瞬态电磁数据、磁化率测量数据。
李梦娜, 曾亦键, Maciek W. Lubczynski, Bob Su, 钱会
本数据集为青藏高原区域2016年日分辨率0.02° x0.02° BRDF 核驱动模型核系数数据集。采用耦合地形因子的多源遥感数据协同反演的BRDF\反照率模型,并引入先验知识进行质量控制,联合极轨卫星数据MODIS反射率和静止卫星葵花8-AHI地表反射率数据反演时空连续的日分辨率的高精度BRDF。MODIS地表反射率数据及AHI天顶反射率数据集为官方网站下载,经过配准、大气校正等处理,以5天为周期合成日分辨率BRDF。相较于同类产品,,该BRDF合成周期最短,且考虑了地形效应,对快速变化地表特征的捕捉更具有优势,且时空连续性更好。可有效支撑j反射率角度效应订正、或用于与BRDF相关地表参数的高精度估算。
闻建光, 唐勇, 游冬琴
该数据集包含纳木那尼冰川(北支)2008-2018年的年物质平衡数据,侧碛和末端自动气象站2011-2019年日气象数据及冰面上2018-2019年的月均气温和相对湿度数据。 冰川物质平衡数据观测时间为每年9月底或10月初,采用冰面测杆和雪坑结合的方法进行观测,获取测杆点的物质平衡数据,然后计算整条冰川的年净物质平衡(具体方法见参考文献)。 2台自动气象站(AWSs,Campbell公司)分别安装在纳木那尼冰川侧碛和末端。AWS1观测时间为2011年10月1日-2018年11月30日,观测数据包括气温(℃)、相对湿度(%)、太阳辐射(W/m2),仪器半小时记录一次气象资料。AWS2观测时间为2010年10月19日-2018年11月30日,观测数据包括风速(m/s)、大气压(hPa)、降水 (mm),仪器每小时记录一次气象资料。首先剔除原始记录中的少量异常数据,然后计算这些参数的日值。数据质量方面:原始数据质量较好,缺失较少。 两个温湿度探头(型号:Hobo MX2301)于2018年安装于冰面,半小时记录一次数据。将半小时数据处理为月均值。原始数据质量较好,没有缺失。 数据以excel文件存储。 该观测资料可以为研究喜马拉雅西段北坡气候、冰川、水资源及其之间的关系提供重要的基础数据,可供研究气候、水文、冰川等的科研工作者使用。
赵华标
本数据集包括2010、2015和2020年间,中亚地区五国(哈萨克斯坦、吉尔吉斯斯坦、塔吉克斯坦、土库曼斯坦和乌兹别克斯坦)的植被覆盖度(FVC)数据。该数据由MODIS-NDVI数据集(产品编号MOD13A2.006),根据干旱区植被盖度与NDVI之间的经验关系计算得到。该产品时间分辨率为1年,空间分辨率1 km。算法从当年所有观测数据中,以低云、低探测角度和最高NDVI值为标准,选择最佳的可用像元值,并进行换算。
徐晓凡, 谈明洪
本数据采用Chen et al. 2017 JHM研究的方法,利用MYD11C3.006和MOD11C3.006两种产品计算得到全天空的地表温度结果,具体计算程序见本数据集的Global_monthly_LST.m。数据格式为*.mat, Global_monthly_LST.m程序给出了实例如何读取该数据。该数据空间分辨率为0.05度,网格中心的经纬度信息分别保存在latitude.mat和Lonitud.mat,由于内陆湖泊、水体的发射率反演的问题,本数据将所有内陆湖泊和水体的地表温度给了NaN值,具体采用的mask见mask.mat文件。经过与全球156个站点观测的LST的验证,总体RMSE为2.69k,mean bias为0.4K,在干旱和半干旱地区的RMSE为2.62K, mean bias为0.94.K.
陈学龙, Bob Su, 马耀明
全面估算了1132个大于1 km2湖泊的水量变化。总的来说,1976至2019年间,湖泊水储量增加了169.7±15.1 Gt(3.9±0.4 Gt yr-1),主要发生在内流区(157.6±11.6或3.7±0.3 Gt yr-1)。1976至1995年间,湖泊水量显示减少(-45.2±8.2Gt或-2.4±0.4Gt yr-1),但在1995至2019年间,大幅增加(214.9±12.7Gt或9.0±0.5Gt yr-1)。2010至2015年间,水量增速减缓(23.1±6.5 Gt或4.6±1.3 Gt yr-1),随后在2015至2019年间再次出现高值(65.7±6.7 Gt或16.4±1.7 Gt yr-1)。在1976-2019年间,冰川补给湖水量增加(127.1±14.3 Gt)远远高于非冰川补给湖(42.6±4.9 Gt),这也与冰川补给湖数量多,面积广有关。另外,封闭湖水量增幅(161.9±14.0 Gt)大大高于外流湖(7.8±5.8 Gt)。
张国庆
本数据为阿姆河上游支流卡菲尼干河水文站水文资料。该站为中国气象局乌鲁木齐沙漠气象研究所和塔吉克斯坦国家科学院水问题水能与生态研究所、塔吉克斯坦水文气象局合作建设。该数据可以用于中亚山区水资源评估等科学研究和水利工程等服务。资料时段:2019年11月3日至2020年12月3日。资料要素:逐小时流速(m/s)、逐小时水位(m)和逐小时降雨量(m)。站点位置:37°36′01″N,68°08′01″E,420m 一、300W-QX河流流速、水位观测仪 (一)流速参数: 1供电电压 12(9~27)V(DC) 2工作电流 120(110~135)mA 3工作温度(-40 ~85) °C 4测量范围 (0.15 ~20)m/s 5测量精度 ±0.02m/s 6分辨率 1mm 7探测距离 0.1~50 m 8安装高度0.15~ 25 m 9采样频率 20sps (二)水位参数: 1测量范围 0.5~20 m 2测量精度 ±3 mm 3分辨率 1 mm 4重复性 ±1mm 二、SL3-1翻斗式雨量传感器 1承水口径 ф200mm 2测量降水强度 4mm/min以内 3测量最小分度 0.1mm降水量 4最大允许误差 ±4%mm 三、流速、观测仪数据获取的频率:传感器每隔5S测量一次流速和水位数据 四、小时平均流速计算:小时平均流速和水位数据由一小时内所有每隔5S测量的流速和水位数据取平均计算得出 五、水位数据中大量出现的0值的说明:水位数据中0值是供电不足引起传感器断电重启,初次启动第一条数据是0,导致小时平均值出现0。经2020年7月26日供电改造后,数据恢复了正常,2020年9月底又开始出现供电不足,经2020年12月25日二次供电改造,数据恢复正常 六、水位监测情况进行说明(如7358行,2020/11/3 16:00,最高水位6.7m,最低水位为0m,如何解释?另,最高水位的最大值是6.7m,数据中多次出现这个最高水位的值,似乎显示了6.7m是监测数据的极限值,实际情况是否如此? ):6.7m是设置的初始传感器距离河床底部高度,出现6.7m是传感器刚启动时候的异常数据,是设备供电不足导致断电重启引起传感器重启,初次启动出现这种异常值,经2020年12月25日供电改造后,数据恢复了正常
霍文, 尚华明
本数据集以大量的地面实测草地地上生物量数据为基础,以1980s中国植被类型图划分出温性草地类型,借助Google Earth Engine平台上的Landsat遥感数据,在不同草地类型分别构建了草地地上实测生物量-遥感数据的随机森林模型,在验证可靠的基础上,对1993~2019年间逐年的草地地上生物量进行了估算,从而形成了1993~2019年中国北方温性草地地上生物量的逐年空间数据集。地上生物量定义为单位面积内地面以上实存生活的植被有机物质总量。已对原有栅格值乘以系数100,单位:0.01克/平方米(g/m²)。本数据集可为中国北方温性草地资源、生态环境的动态监测和评价提供科学基础。
张娜
中亚干旱区极端降水指数长时间序列数据集包含了49个站点的10项极端降水指数长时间序列数据。该数据集以全球日气候历史数据网络(GHCN-D)的逐日降水数据为基础,经过数据质量控制和异常值剔除,选取符合极端降水指数计算的站点,计算了气候变化检测和指数联合专家组(ETCCDI)定义的10项极端降水指数(PRCPTOT、SDII、RX1day、RX5day、R95pTOT、R99pTOT、R10、R20、CWD、CDD)。其中,有15站时间序列为1925-2005年。本数据集可以作为在全球气候变化下中亚干旱区极端降水事件发生频率和趋势探测分析的材料,也可以作为基础数据来探索极端降水事件对农牧业生产和生命财产损失的影响。
姚俊强, 陈静, 李建刚
该数据集依据中分辨率长时间序列遥感影像Landsat,通过影像融合、遥感解译、数据反演等多种方式获得青藏高原1990/1995/2002/2005/2010/2015六期生态系统类型情况分布图,作出25年(1990-2015)青藏高原生态本底图,空间参考系统为Krasovsky_1940_Albers,空间分辨率为1000m。青藏高原各类生态系统面积统计表明,1990-2015年间,林地、草地面积略有减少,城镇用地、农村居民点及其他建设用地面积增加,河流、湖泊等水体面积增加,永久性冰川积雪面积减少。该图集可用于青藏高原生态工程的规划、设计及管理,并可作为生态系统现状的基准,用于阐明青藏高原重大生态工程建设的时空格局,揭示青藏高原生态系统格局和功能的变化规律和区域差异。
赵慧, 王小丹
该数据集记录了长江、黄河、湟水国控地表水监测断面水质评价结果(2010-2012年)。数据统计自玉树州生态环境局,数据集包含18个文件,分别为:2010年4月长江干流国控断面水质状况评价,2010年5月长江干流国控断面水质状况评价,2010年9月长江干流国控断面水质状况评价,2010年10月长江干流国控断面水质状况评价等,数据表结构相同。 每个数据表共有7个字段,2010年4月长江干流国控断面水质状况评价表: 字段1:监测断面 字段2:水环境功能区类划分 字段3:水质类别 字段4:主要污染指标 字段5:水质状况 字段6:上月水质状况 字段7:上年同期水质状况
玉树州生态环境局
该数据集记录了2015-2018年青海省各监测区地下水水位动态变化统计情况表。数据统计自青海省自然资源厅,数据集包含4个数据表,分别为:2015年青海省各监测区地下水水位动态变化统计表,2016年青海省各监测区地下水水位动态变化统计表,2017年青海省各监测区地下水水位动态变化统计表,2018年青海省各监测区地下水水位动态变化统计表,数据表结构相同,共包含7个字段: 字段1:"地理位置" 字段2:"基本平衡区(km2)" 字段3:"占监测面积的百分比((%)" 字段4:"弱下降区(km2)" 字段5:"占监测面积的百分比(%)" 字段6:"强下隆区(km2)" 字段7:"占监测面积的百分比(%)"
青海省自然资源厅
本数据集包括中亚大湖区五国(哈萨克斯坦、吉尔吉斯斯坦、塔吉克斯坦、土库曼斯坦和乌兹别克斯坦)的内陆水域数据,包括河流,运河和湖泊的分布。各个国家的线状和面状要素分别存储在不同文件中。该数据集来自世界数字地图(DCW),其主要来源是美国,澳大利亚,加拿大和英国制作的美国国防测绘局(DMA)的操作导航图(ONC)1:1,000,000比例纸质地图系列。DCW数据库最后更新至1992年,并于2006年开始免费提供。
徐晓凡, 谈明洪
青藏高原蒸散发是利用遥感、气象、以及野外通量观测站等数据,采用多尺度-多源数据协同的陆表蒸散遥感模型-ETWatch进行计算的。ETWatch采用了余项法与P-M公式相结合的方法计算蒸散。首先根据数据影像的特点选择适用的模型反演晴好日蒸散;遥感模型常常因为天气状况无法获取清晰的图像而造成数据缺失,为获得逐日连续的蒸散量的,引入Penman-Monteith公式,将晴好日的蒸散结果作为“关键帧”,将关键帧的地表阻抗信息为基础,构建地表阻抗时间拓展模型,填补因无影像造成的数据缺失,利用逐日的气象数据,重建蒸散量的时间序列数据,并通过数据融合模型,将中低分辨率的蒸散时间变化信息与高分辨率的蒸散空间差异信息的相结合,构建高时空分辨率蒸散数据集,从而生成青藏高原8km分辨率蒸散数据集(1990-2015)。
王晓峰
1)数据内容:泛第三极地区基于遥感反演的主要生态环境数据,包含PM2.5浓度、森林覆盖率、EVI、土地覆被、CO2等指标;2)数据来源及加工方法:PM2.5数据来源于the Atmospheric Composition Analysis Group Web site at Dalhousie University、森林覆盖度数据来源于MODIS Vegetation Continuous Fields (VCF),CO2数据来源于ODIAC Fossil fuel emission dataset,EVI数据来源于MODIS Vegetation Index Products,土地覆被数据来源ESA CCI Land cover。提取出泛第三极65个国家和地区,其他未进行加工;3)数据质量描述:数据2000-2015年数据时间序列较好;4)数据应用成果及前景:可用于生态环境变化分析。
李广东
该数据集是基于一系列微波遥感数据获取,包含Special Sensor Microwave Imager (SSM/I), Advanced Microwave Scanning Radiometer for Earth Observation System (AMSR-E)等,表征植被的含水量,可作为初级生产力的参考。数据来源于Liu et al. (2015),具体计算方法参见文章。源数据范围为全球,本数据集选取了青藏高原区域。该数据集常被用作评定植被绿度和初级生产力的时间和空间格局,具有实际意义和理论价值。
刘毅
中国地表温度数据集包含2003-2017年期间中国(约960万平方公里土地)的地表温度数据,时间分辨率为月尺度,空间分辨率为5600 m。 数据集主要是通过集成MODIS每日数据(MOD11C1和MYD11C1),月数据(MOD11C3和MYD11C3)和气象站数据,以重建月尺度LST图像云覆盖下的真实LST来生成的,然后构建回归分析模型以进一步提高精度。 六个具有不同气候条件的自然分区。 精度分析表明,重建结果与现场测量结果密切相关,平均RMSE为1.39°C,MAE为1.30°C,R2为0.97。 详情请参考引用文献Zhao et al (2020)。
毛克彪
基于青藏高原土壤温湿度观测网玛曲站点建立的地基L波段微波辐射计观测系统(ELBARA-III,由欧洲航空局提供),本数据集囊括了水平和垂直极化的L波段亮温数据,地表及以下不同层土壤湿度和温度数据,地表通量(如感热、潜热、碳通量),气象要素数据(如降水、上下行长波/短波辐射、空气温度和湿度、气压)以及植被叶面积指数LAI和土壤性质等辅助数据。此多年尺度的数据集可用于提高对陆面过程、微波辐射过程的理解,验证SMOS和SMAP卫星亮温观测和土壤湿度反演结果,校验微波辐射传输模型中的假设条件,验证陆面模式输出以及再分析资料,反演土壤物理性质,量化陆-气间的水、碳、能量交换,并将帮助定量化地球系统模型中参数化方案的偏差和不确定性,从而提出相应改进方案。 ELBARA-III双极化亮温数据可通过测量的辐射计电压和校准的内部噪声温度计算得到。该数据质量可靠,其质量控制主要通过:1)对辐射计输出的原始电压数据(以800Hz采样频率)进行直方图检验,利用统计指标过滤射频干扰对ELBARA-III微波信号数据的影响;2)检查辐射计进行天空辐射测量时两天线端口的电压值是否相似,天线电缆有无损耗;3)分析仪器内部温度、主动冷源温度和环境温度;4)分析不同入射角度的双极化亮温的特点。 - 时间分辨率:30分钟 - 空间分辨率:入射角为40°~ 70°,间隔为5°,观测覆盖范围为3.31 m^2~ 43.64 m^2 - 测量精度:亮温,1 K;土壤水分,0.001 m^3 m^-3;土壤温度,0.1 °C - 单位:亮温,K;土壤水分,m^3 m^-3;土壤温度,°C /K
Bob Su, 文军
中亚农业水资源脆弱性数据集基于气象、土地覆盖、地形和社会经济数据, 依据脆弱性概念框架, 从暴露度、敏感度和适应度 3 个方面选取 18 个指标, 建立了农业水资源脆弱性评价指标体系, 采用等权重法和主成分分析法确定指标权重, 对中亚农业水资源脆弱性进行了评价及特征分析。对部分原始各个栅格数据进行比较,从原始目标栅格最左上角开始,依次向相邻的右、下栅格延伸,四个栅格(即0.5°)取中位数合并为一个栅格,并且该中位数作为四个栅格中心点对应的地理坐标的数值,消除栅格间的极端数值情况。数据提供了1992-1996、1997-2001、2002-2006、2007-2011、2012-2017和1992-2017六个时间段,空间分辨率为0.5°乘以0.5°。数据集可为中亚五国农业水资源供需和开发利用分析等提供基础数据支撑。
李兰海, 于水
本数据集包含2001-2018年青藏高原月平均地表实际蒸散发量,空间分辨率为0.1度。数据集主要以卫星遥感数据(MODIS)和再分析气象数据(CMFD)作为输入,利用地表能量平衡系统模型(SEBS)计算得到。在计算湍流通量的过程中引入了次网格地形拖曳参数化方案,提高了对地表感热通量和潜热通量的模拟。另外,利用青藏高原6个湍流通量站的观测数据对模型输出的蒸散发量进行了验证,显示出了较高的精度。该数据集可用于研究青藏高原陆气相互作用和水循环特征。
韩存博, 马耀明, 王宾宾, 仲雷, 马伟强, 陈学龙, 苏中波
高质量高时空分辨率降水产品在理解全球和区域尺度的“水-碳-能”循环研究中扮演重要角色。卫星遥感为监测降水高时空变异特征提供了不可替代的手段,尤其是在自然条件恶劣的无资料地区。但由于是间接估算而来,卫星遥感降水产品不可避免地存在系统偏差和随机误差。聚焦于目前主流的遥感降水产品(GPM IMERG及其回推产品,0.1°/half-hourly,2000-present)获取过程中的潜在不足,如该产品的矫正时空尺度为1.0°/monthly,本研究在更高时空尺度上提出一套新的时空矫正算法,并引入高质量地面观测产品APHRODITE(0.25°/daily),生产了一套亚洲地区同期高质量高时空分辨率降水数据集AIMERG(0.1◦/half-hourly,2000–2015)。AIMERG降水数据集能够同时有效考虑卫星估计和地面观测的各自优势,其系统偏差和随机误差在中国地区不同时空尺度上的表现优于GPM IMERG,为亚洲地区相关领域的科学研究及生产实践提供了更为丰富且可靠的基础数据。
马自强
泛第三极主要城市2000-2017年土地覆盖数据包含2000/2010/2017年14个城市(乌鲁木齐、西宁、兰州、达卡、加德满都、勒克瑙、德里、拉合尔、伊斯兰堡、喀布尔、杜尚别、塔什干、比什凯克、阿拉木图)30米分辨率的数据。包括植被、耕地、人造地表、水体和其它五种地类。利用GlobeLand30, MCD12Q1,Globcover2009识别了分类一致区域并保留,采用深度学习方法对分类不一致区域重新分类,融合两类区域得到最终的分类结果。 每年数据均经过人工目视解译验证。 数据应用于泛第三极城市建设用地变化、人类活动影响的研究。 数据类型:栅格。 投影方式:UTM投影。
栾文飞, 李新
该数据提供了青藏高原内陆流域582个面积大于1平方公里的湖泊从1986-2019的年湖泊面积。 首先根据JRC和SRTM DEM数据,识别研究区内582个大于1 km2的湖泊。利用Landsat5/7/8所有覆盖湖泊的遥感影像合成每年的Landsat影像,根据NDWI指数和Ostu算法动态分割每个湖泊,并据此计算每个湖泊1986-2019年湖泊面积大小。 本研究基于Landsat卫星遥感影像,利用Google Earth Engine 处理了所有Landsat影像,建立了至今为止最全的青藏高原地区大于1平方公里的年湖泊面积数据集;开发了一套湖泊面积自动提取算法,实现单个湖泊多年面积的批量计算;该数据对分析青藏高原地区湖泊面积动态、水量平衡,及研究青藏高原湖气候变化有重要意义。
朱立平, 彭萍
湖冰是冰冻圈的重要参数,其变化与气温、降水等气候参数密切相关,而且可以直接反映气候的变化,因此是区域气候参数变化的一个重要指标。但由于其研究区往往位于自然环境恶劣,人口稀少的区域,大规模的实地观测难以进行,因此利用哨兵1号卫星数据,以10m的空间分辨率和优于30天的时间分辨率对不同类型的湖冰变化进行监测,可填补观测空白。利用HMRF算法对不同类型的湖冰进行分类,通过时间序列分析三个极区中部分面积大于25km2的湖泊的不同类型湖冰的分布,形成湖冰类型数据集。数据包括了被处理湖泊的序号,所处年份及其在时间序列中的序号等信息,矢量数据集包括采用的算法,所使用的哨兵1号卫星数据,成像时间,所处极区,湖冰类型等信息,用户可以根据矢量文件确定时间序列上不同类型湖冰的变化。
田帮森, 邱玉宝
在高寒网各野外站和泛第三极地区境外台站的长期观测数据基础上,建立泛第三极地区气象、水文及生态要素系列数据集;通过重点区域的强化观测与样地和样点验证,完成气象要素、湖泊水量与水质、地上植被生物量、冰川冻土变化等数据产品的反演;基于物联网技术,研制建立多站联网的气象、水文、生态数据管理平台,实现联网数据实时获取与远程控制及共享。 2019年中国高寒地区地表过程与环境观测网络水文数据集,主要收集:藏东南站、珠峰站、玉龙雪山站、纳木错站、阿里站、天山站等六个站 点实测水文(径流、水位、水温等)数据。 藏东南站:流量数据,包含2019年4次利用M9测流数,有平均流速、流量和最大水深等数据;相对水位数据采用hobo压力式水位仪测量,包含2019年全年日均相对水位和水温数据。 纳木错站:流量数据,包括2019年4次利用国产LS-1206B手持流速仪测量数据,包含河宽和流量数据,水位数据采用hobo压力式水位仪测量,包含2019年原始1小时的水压、水温和电量,通过水压可以计算相对水位; 珠峰站:绒布河流量,包括2019年6-9月13次利用国产LS-1206B手持流速仪测量数据,包含河宽和流量数据; 阿里站:流量数据:包括2019年利用河锚M9不定期测量的22次数据,相对水位数据采用hobo压力式水位仪测量,包含2019年全年每小时水位和水温数据; 天山站:水位数据:包括3个点2019年的日平均水位 玉龙雪山站: 包括木家桥2019年1-10月流量数据
朱立平, 彭萍
该数据集包含了2012年7月至2013年8月采集的黑河流域典型土壤样点的土壤pH数据。2012年组织开展了第1次野外土壤调查采样。2013年在对已有土壤剖面样点进行定量评估的基础上,重点对已有剖面点代表性较差的景观区域进行土壤环境分析,形成补充性调查方案,组织开展了第2次土壤调查采样。黑河流域典型土壤样点采集方式为代表性采样,所采集样点覆盖了黑河流域的上游、中游、下游地区,涵盖了黑河流域的典型景观类型,能够反映黑河流域土壤属性整体的空间分布规律。野外土壤样品采集的深度参照中国土壤系统分类,以诊断层和诊断特性为基础,采取土壤剖面的土壤发生层样品。
宋效东, 张甘霖
数据集包括2015年11月27日- 2016年3月26日阿勒泰基站(lon:88.07, lon: 44.73)地面被动微波亮温、多角度亮温、10分钟四分量辐射和雪温、雪坑日观测数据和逐时气象数据。 日雪坑参数包括:积雪分层、分层厚度、密度、粒度、温度。 这些数据存储在5个NetCDF文件中,TBdata.nc, TBdata-multiangle.nc, Ten-minute 4 component radiation and snow temperature.nc, Hourly meteorological and soil data.nc and Daily snow pit data.nc,以及readme.doc。 TBdata.nc 为六通道双偏振微波辐射计RPG-6CH-DP自动采集的两偏振三个通道的亮度温度。内容包括年、月、日、时、分、秒、Tb1h、Tb1v、Tb18h、Tb18v、Tb36h、Tb36v、入射角、方位角。 TBdata-multiangle.nc为两种极化的3个通道的7组多角度亮度温度。 包括年、月、日、时、分、秒、Tb1h、Tb1v、Tb18h、Tb18v、Tb36h、Tb36v、入射角、方位角。 The ten-minute 4 component radiation and snow temperature. nc 为4组分辐射和层状雪温度。 内容包括:年、月、日、时、分、SR_DOWN、SR_UP、LR_DOWN、LR_UP、T_Sensor、ST_0cm、ST_5cm、ST_15cm、ST_25cm、ST_35cm、ST_45cm、ST_55cm。 The hourly meteorological and soil data.nc为每小时天气数据和分层土壤数据。内容包括年、月、日、时、Tair、Wair、Pair、Win、SM_10cm、SM_20cm、Tsoil_5cm、Tsoil_10cm、tsoil_15cm、Tsoil_20cm。 The daily snow pit data.nc为人工雪坑数据。观测时间为当地时间上午8:00-10:100。内容包括年、月、日、雪深、thickness_layer1、thickness_layer2、thickness_layer4、thickness_layer5、thickness_layer6、Long_layer1、Short_layer1、Long_layer2、Short_layer2、Long_layer3、Short_layer4、Long_layer5、Short_layer5、Long_layer6、short_layer6、Stube、snow shovel_0-10、 雪铲_10-20、雪铲_20-30、雪铲_30-40、雪铲_40-50、雪叉_10、雪叉_15、雪叉_20、雪叉_25、雪叉_30、雪叉_35、雪叉_40、雪叉_45、雪叉_50、形状1、形状2、形状3、形状4、形状5。
戴礼云
中国冰冻圈是指中国范围内,大气圈、水圈、生物圈、岩石圈的冻结部分。中国冰冻圈资源与环境信息系统是对中国冰冻圈资源与环境数据进行管理与分析的综合性信息系统。建立中国冰冻圈资源与环境信息系统一方面是满足地球系统科学的需要,为研制地理信息系统支持下的冻土、冰川以及雪盖对全球变化的响应与反馈模型提供参数与验证数据;另一方面系统整理和抢救宝贵的冰冻圈数据,为其提供一个科学、高效、安全的管理与分析工具。 中国冰冻圈资源与环境信息系统包含三个不同空间的基础数据库。其中青藏公路沿线部分的研究区域主要是青藏公路自西大滩到那曲约700公里长、公路两侧20~30公里宽的区域,这一区域广泛分布着多年冻土。青藏公路沿线基础数据库包含以下类型的数据: 1、冰冻圈数据。包括:积雪深度分布。 2、自然环境与资源。包括: 基础地质:第四纪地质(Quatgeo) 3、公路沿线冻土钻孔观测数据(Borehole):青藏公路沿线200个钻孔探测资料。 工程地质剖面图(CAD):岩性分布、含水量、颗分资料等 4、青藏公路沿线地区冰川质量平衡分布模型(Model):预测冻土格网数据。 青藏公路沿线图形数据包括13幅的比例尺为1:250000图幅;格网尺寸为100×100m。 详情请查看数据中的文档“中国冰冻圈资源与环境信息系统设计.doc”、“中国冰冻圈资源与环境信息系统数据字典.DOC”、“数据库-青藏公路.DOC”。
李新
Data set contains tree age of trees growing at different glacier moraines in the central Himalayas. The data were obtained using tree ring samples. Cores samples were collected (almost near to the ground level to estimate the minimum age of the related moraine) using an increment borer. Samples were processed by using standard dendrochronological techniques.
Shalik Ram Sigdel, Hui Zhang, Haifeng Zhu, Sher Muhammad, Eryuan Liang
青藏高原野外观测研究平台是开展青藏高原科学观测和研究的前沿阵地。基于高原地表过程与环境变化的陆面-边界层立体综合观测为青藏高原地气相互作用机理及其影响研究提供了大量的珍贵数据。本数据集综合了珠穆朗玛大气与环境综合观测研究站、藏东南高山环境综合观测研究站、那曲高寒气候环境观测研究站、纳木错多圈层综合观测研究站、阿里荒漠环境综合观测研究站、慕士塔格西风带环境综合观测研究站2005-2016年逐小时大气、土壤和涡动观测数据。包含了由多层风速风向、气温、湿度以及气压、降水组成的梯度观测数据,辐射四分量数据,多层土壤温湿度和土壤热通量观测数据以及感热通量、潜热通量和二氧化碳通量组成的湍流数据。这些数据能广泛的应用于青藏高原气象要素特征分析、遥感产品评估和遥感反演算法的发展、数值模拟的评估和发展等研究中。
马耀明
西亚地区荒漠化专题数据主要包括:西亚地区沙化土地分布图和西亚地区退化草地分布图,空间分辨率为30m。西亚地区沙化土地分布图包含的土地类型有沙地、盐碱地、裸土地和裸岩石砾地,西亚地区退化草地分布图将草地划分为高覆盖草地、中覆盖草地和低覆盖草地三类。数据由中国科学院新疆生态与地理研究所遥感与GIS重点实验室生产,生产费用由“中国科学院战略性先导科技专项XDA20030101资助”,数据空间分辨率为30m。数据主要是基于2015年TM、ETM遥感影像数据,基于去云、镶嵌与裁剪、拼接、阴影处理等预处理,借助eCognition软件进行面向对象的地类分类,实现软件自动分类和人工信息提取相结合,最后对分类结果进行人工检查与修正。数据验证方式为野外实地验证和高精度影像验证两种方式,验证精度达到85%以上。
该数据集描述了雅鲁藏布江流域的降水时空分布,融合了 CMA、GLDAS、ITP-Forcing、MERRA2、TRMM五套再分析降水产品和卫星降水产品, 并结合流域内9个国家气象站和166个水利部雨量筒的观测降水制作而成,时间范围为1981-2016年,时间分辨率为3 h,空间分辨率为5 km,单位是mm/h。该数据将为雅江流域的研究提供更好的数据支撑,可用于研究流域水文过程对气候变化的响应等领域。具体使用信息请看随数据一同上传的说明文档。
汪远伟, 王磊, 李秀萍, 周璟
UHSLC提供了具有两个质量控制级别(QC)的潮汐测量数据。 其中快速交付(FD)数据是在数据收集的1-2个月内发布的,并且只接收关注于大级别转移和明显异常值的基本QC。GLOSS/CLIVAR(以前称为WOCE)“快速”海平面数据是按小时、每天和每月的价值进行分配。这个项目得到了NOAA的气候和全球变化计划的支持。其中每个文件都有一个名称“h######dat”,其中“h”表示每小时的海平面数据,而“###”表示站点号码,每个站点都存在一个文件。UHSLC数据集是GLOSS数据流。在UHSLC数据库中有许多潮汐记录,但骨干是光缆核心网(GCN)——全球300个验潮站的全球集合,它是全球原位海平面网络的基础。该网络被设计成在各种时间尺度上提供全球沿海海平面变化的均匀分布采样。
董文, University of hawaii sealevel center (UHSLC)
青藏高原由于高云覆盖,通常用来监测湖泊面积的光学遥感影像数据,如Landsat只能用来监测湖泊年尺度面积变化,而对湖泊季节变化研究了解较少。使用Sentinel-1 SAR数据,对青藏高原大于50平方公里湖泊月尺度面积进行了提取。研究显示,湖泊的季节变化显示出截然不同的模式,面积较大的湖泊(> 100 km2)在8-9月达到峰值,而较小的湖泊(50-100 km2)面积在6-7月达到峰值。封闭湖泊面积的季节峰值更突出,而外流湖的季节峰值更平缓。冰川补给湖相对于非冰川补给湖显示了延迟的面积峰值。同时,大尺度的大气环流,如西风、印度季风、和东亚季风也影响着湖泊面积的季节变化。此研究为监测湖泊面积年内变化弥补了空白。
张宇, 张国庆
该数据集包含了2012年7月至2013年8月采集的黑河流域典型土壤样点的土壤容重数据。2012年组织开展了第1次野外土壤调查采样。2013年在对已有土壤剖面样点进行定量评估的基础上,重点对已有剖面点代表性较差的景观区域进行土壤环境分析,形成补充性调查方案,组织开展了第2次土壤调查采样。黑河流域典型土壤样点采集方式为代表性采样,所采集样点覆盖了黑河流域的上游、中游、下游地区,涵盖了黑河流域的典型景观类型,能够反映黑河流域土壤属性整体的空间分布规律。野外土壤样品采集的深度参照中国土壤系统分类,以诊断层和诊断特性为基础,采取土壤剖面的土壤发生层样品。
宋效东, 张甘霖
青藏高原的水土资源匹配数据,由站点气象数据(2008-2016年,国家气象数据共享网)经过彭曼公式计算得出的潜在蒸散发数据,利用土地利用的不同土地类型,根据下垫面影响系数计算现有土地利用下的蒸散发量;以及气象数据中的站点降雨数据插值得到的降雨数据,根据两者差值得到水土资源匹配系数。实际降雨与现有土地利用条件下的需水量之间的差值来反映水土资源的匹配性,数值越大匹配性越好。水土资源的匹配情况的空间分布能为进一步了解青藏高原的农牧业资源情况做铺垫。
董凌霄
该数据集包含了2012年7月至2013年8月采集的黑河流域典型土壤样点的土壤有机碳数据。2012年组织开展了第1次野外土壤调查采样。2013年在对已有土壤剖面样点进行定量评估的基础上,重点对已有剖面点代表性较差的景观区域进行土壤环境分析,形成补充性调查方案,组织开展了第2次土壤调查采样。黑河流域典型土壤样点采集方式为代表性采样,所采集样点覆盖了黑河流域的上游、中游、下游地区,涵盖了黑河流域的典型景观类型,能够反映黑河流域土壤属性整体的空间分布规律。野外土壤样品采集的深度参照中国土壤系统分类,以诊断层和诊断特性为基础,采取土壤剖面的土壤发生层样品。
宋效东, 张甘霖
该数据集是基于MODIS 16天合成的NDVI产品(MOD13Q1 collection6)估算的三江源国家公园区域的植被生长季开始(Start of Season: SOS)和生长季结束的日期(End of Season: EOS)。共用了两种常见的物候期估算方法,分别是基于多项式拟合的阈值提取法(文件名中有poly字符)和基于双逻辑曲线(double logistic function)拟合后的拐点提取法(文件名中有sig字符)。该数据可以用来分析植被物候期与气候变化的关系。时间范围为2001年至2020年。空间分辨率为250m。数据中包含4个子文件夹,CJYYQ_phen是三江源国家公园长江源园区的物候结果,HHYYQ_phen是三江源国家公园黄河源园区的物候结果,LCJYYQ_phen是三江源国家公园澜沧江源园区的物候结果,SJY_phen是整个三江源区域的物候。 数据格式为geotif,建议使用arcmap或者Python+GDAL浏览和处理数据。
王旭峰
PML_V2陆地蒸散发与总初级生产力数据集,包括总初级生产力(gross primary product, GPP),植被蒸腾(vegetation transpiration, Ec),土壤蒸发(soil evaporation, Es),冠层截流蒸发(vaporization of intercepted rainfall, Ei)和水体、冰雪蒸发(ET_water),共5个要素。数据格式为tiff,时空分辨率为8天、0.05°,时间跨度为2002.07-2019.08。 PML_V2在Penman-Monteith-Leuning (PML) 模型的基础上,根据气孔导度理论,耦合了GPP过程。GPP与ET相互制约、相互限制,使得PML_V2在ET模拟精度,相对于以往的模型有很大的提升。PML_V2的参数分不同的植被类型,在全球95个涡度相关通量站上率定。其后根据MODIS MCD12Q2.006 IGBP分类,将参数移植至全球。PML_V2采用GLDAS 2.1的气象驱动和MODIS 叶面积指数(LAI)、反射率(Albedo),发射率(Emissivity)为输入,最终得到PML_V2陆地蒸散发与总初级生产力数据集。
张永强
土地覆盖数据是了解人类活动与全球变化之间复杂相互作用的关键信息来源。基于清华大学制作的30 m分辨率的FROM-GLC全球土地覆盖产品,利用34个泛第三极关键节点区域矢量对其进行裁剪等处理,获得本数据集。本数据集的一级分类体系为:10.农田;20.森林;30.草地;40.灌木丛;50.湿地;60.水体;70.苔原;80.不透水面;90.裸地;100.冰雪;120.云。其数据质量取决于FROM-GLC产品质量,本数据集作为所有遥感数据的研究基础,为项目提供了基底数据。
葛咏, 凌峰, 张一行
利用长时间序列Landsat遥感数据,获取了整个青藏高原近50年(1970s~2021)共15期湖泊观测数据,对大于1平方公里湖泊的数量及面积变化进行了详细分析。研究发现青藏高原湖泊数量从1970年代的1080个增加到2021年的~1400个。相应地,湖泊面积从1970年代的4万平方公里增加到了2021年的5万平方公里,净增加了1万平方公里。青藏高原湖泊并非持续单调地增加。在1970s至1995年间,大部分湖泊呈现萎缩状态;但在1995年之后,除2015年外,青藏高原湖泊的数量和面积总体呈现出持续增加趋势。流域尺度上,除雅鲁藏布流域外,均在扩张。
张国庆
该数据集包含了2018年1月1日至2018年12月31日黑河流域地表过程综合观测网中游大满超级站气象要素梯度观测系统数据。站点位于甘肃省张掖市大满灌区农田内,下垫面是玉米田。观测点的经纬度是100.3722E, 38.8555N,海拔1556m。风速/风向、空气温度、相对湿度传感器分别架设在3m、5m、10m、15m、20m、30m、40m处,共7层,朝向正北;气压计安装在2m处;翻斗式雨量计安装在塔西侧约8m处,架高2.5m;四分量辐射仪安装在12m处,朝向正南;两个红外温度计安装在12m处,朝向正南,探头朝向是垂直向下;土壤热流板(自校正式)(3块)依次埋设在地下6cm处,朝向正南距离塔体2m处,其中两块(Gs_2、Gs_3)埋设在棵间,一块(Gs_1)埋设在植株下面;平均土壤温度传感器TCAV埋设在地下2cm、4cm处,朝向正南,距离塔体2m处;土壤温度探头埋设在地表0cm和地下2cm、4cm、10cm、20cm、40cm、80cm、120cm和160cm处,在距离气象塔2m的正南方;土壤水分传感器分别埋设在地下2cm、4cm、10cm、20cm、40cm、80cm、120cm和160cm处,在距离气象塔2m的正南方;光合有效辐射仪安装在12m处,探头朝向是垂直向上;另有四个光合有效辐射仪分别架设在冠层上方和冠层内,冠层上方安装在12m(探头垂直向上和向下方向各一个)、冠层内安装在0.3m(探头垂直向上和向下方向各一个)高处,朝向正南。 观测项目有:风速(WS_3m、WS_5m、WS_10m、WS_15m、WS_20m、WS_30m、WS_40m)(单位:米/秒)、风向(WD_3m、WD_5m、WD_10m、WD_15m、WD_20m、WD_30m、WD_40m)(单位:度)、空气温湿度(Ta_3m、Ta_5m、Ta_10m、Ta_15m、Ta_20m、Ta_30m、Ta_40m和RH_3m、RH_5m、RH_10m、RH_15m、RH_20m、RH_30m、RH_40m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、平均土壤温度(TCAV)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_2cm、Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_160cm)(单位:百分比)、土壤温度(Ts_0cm、Ts_2cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_160cm)(单位:摄氏度) 、光合有效辐射(PAR)(单位:微摩尔/平方米秒)、冠层上向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒)和冠层下向上与向下光合有效辐射(PAR_D_up、PAR_D_down)(单位:微摩尔/平方米秒)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;2018.9.17-11.7由于采集器的问题,气象梯度部分的数据缺失;由于采集器通道问题,平均土壤温度TCAV数据在11月7日后数据不正确。(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018-6-10 10:30。 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
李新, 车涛, 徐自为, 任志国, 谭俊磊
青藏高原湖泊广布,近年来呈现普遍扩张的趋势。掌握这些湖泊的水位及水量变化信息对认识区域水文-气候交互机制及其演变规律意义重大。本数据集包含青藏高原52个大、中型湖泊2000 - 2017年的水位、水量变化,面积-水位关系曲线等信息,多数湖泊的水位及水量变化时间分辨率在月尺度或旬尺度。本数据基于多源测高卫星数据和Landsat光学影像制作,将光学影像观测到的湖泊岸线变动转化为水位信息(简称光学水位),并且借助光学水位移除了多源测高水位之间系统偏差。野外实验和理论分析的结果一致表明光学水位的精度在0.1 - 0.2 m,与测高水位精度相当,测高水位的不确定性用同一周期内有效水面足迹点高程的标准差表示,已经包含在数据集中。本数据集可以应用于水资源和水安全管理,湖泊流域水文分析,水量平衡分析等,尤其在湖泊溢流洪水监测方面有较大的潜力。
李兴东, 龙笛, 黄琦, 韩鹏飞, 赵凡玉, 荣田佳秀
北极圈大河流域内缺乏一套长时间序列的高分辨率降水格点数据,本数据提供了北极主要大河流域的逐日降水,数据集的范围为北纬45°至76.15°,使用的元数据包括:GSOD的1980-2015年气象站点数据,ERA-interim 1980-2018年降水数据,方法为:对站点数据进行风速修正,将其使用空间插值方法获得一套高分辨率的插值降水格点数据,使用改进后的分位数映射法(Quantile-Mapping),以插值降水数据作为背景数据,对ERA-interim数据进行频率订正,最终得到订正后的ERA-interim降水格点数据。可为北极大河流域水文过程的研究提供一套新的降水资料。
雷华锦, 李弘毅
本数据是通过建立雅鲁藏布江流域WEB-DHM分布式水文模型,以气温、降水、气压等作为输入数据,模拟输出的5km逐月水文数据集,包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。本数据是通过建立雅鲁藏布江流域WEB-DHM分布式水文模型,以气温、降水、气压等作为输入数据,模拟输出的5km逐月水文数据集,包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。
王磊
本研究数据主要基于Google Earth Engine大数据云处理平台,选用2017年三江源、普尔河、育空河流域Sentinel-2为基础数据,SRTM-DEM和Global Surface Water为辅助数据,选用AWEIn,AWEIs,WI2015,MNDWI,NDWI等多种水体指数阈值提取的方法,依据年水体频率获得季节水体与永久水体分类数据(空间分辨率10m)。该水体数据产品,为高时空分辨率水体变化和冻土水文分析提供了有效基础数据。
冉有华
GLObal WAter BOdies database(GLOWABO)数据集,Charles Verpoorter等人基于GeoCoverTM Water bodies Extraction Method利用2000±3年Landsat 7 ETM+影像,获得全球水体数据集。水体提取方法结合主成分分析、阈值提取、纹理特征提取等多种方法,空间分辨率15m,总体精度91%。数据还包括水体面积、周长、形状指数、高程等信息。本数据集选区其中三江源流域、普尔河流域、育空河流三个流域数据集,为北半球极地水文研究提供数据支持。
Charles Verpoorter
基于20世纪60年代的锁眼卫星数据,采用面向对象的监督分类,结合人工目视解译修正,生产出水体数据产品。总解译面积64.5万km2,占研究区96.28%,其中三江源研究区影像缺失18844 km2,阿拉斯加育空流域研究区影像缺失4220 km2,西西伯利亚普尔河流域研究区影像缺失1954 km2。解译最小线状地物图上宽度大于8米,最小面状地物图上面积大于100平方米,描迹精度2个象元,一级类解译精度达到95%以上。获取的高空间分辨率水体数据产品,为上世纪70年代水体变化研究提供有效数据,也为冻土变化研究提供可靠依据。
冉有华
南极半岛也叫“帕默尔半岛”或“格雷厄姆地”。位于西南极洲,是南极大陆最大、向北伸入海洋最远(南纬63°)的大半岛,东西濒临威德尔海和别林斯高晋海。南极半岛被称为南极洲的“热带”。这里属于典型的副极地海洋性气候,与南极大陆相比,是南极洲最暖、最湿的地区之一,边缘区域的岛屿分布有少量的先锋植物,主要以苔藓和地衣为主。南极半岛及周边植物丰度数据产品通过实测光谱匹配遥感影像,应用纯像元PPI提取出苔藓、地衣、岩石、海、积雪的端元波谱。应用线性混合模型LMM(Linear Mixture Model)计算得到。
徐希燕
南极半岛也叫“帕默尔半岛”或“格雷厄姆地”。位于西南极洲,是南极大陆最大、向北伸入海洋最远(南纬63°)的大半岛,东西濒临威德尔海和别林斯高晋海。南极半岛被称为南极洲的“热带”。这里属于典型的副极地海洋性气候,与南极大陆相比,是南极洲最暖、最湿的地区之一,边缘区域的岛屿分布有少量的先锋植物,主要以苔藓和地衣为主。南极半岛及周边植物丰度数据产品通过实测光谱匹配遥感影像,应用纯像元PPI提取出苔藓、地衣、岩石、海、积雪的端元波谱。应用线性混合模型LMM(Linear Mixture Model)计算得到。菲尔德斯半岛特色植被覆盖度根据其与丰度的相关线性关系获得。
徐希燕
南极半岛也叫“帕默尔半岛”或“格雷厄姆地”。位于西南极洲,是南极大陆最大、向北伸入海洋最远(南纬63°)的大半岛,东西濒临威德尔海和别林斯高晋海。南极半岛被称为南极洲的“热带”。这里属于典型的副极地海洋性气候,与南极大陆相比,是南极洲最暖、最湿的地区之一,边缘区域的岛屿分布有少量的先锋植物,主要以苔藓和地衣为主。南极半岛及周边植物光谱和标注数据为2018年1月7-22日南极半岛周边菲尔德斯半岛和阿德利岛的9个区域37个样点的光谱数据,为南极植物分布和变化研究提供本底信息。
徐希燕
斯瓦尔巴群岛(又译斯瓦尔巴特、斯匹次卑尔根群岛)。位于北极地区的群岛,是挪威最北界国土范围的属地,它坐落在欧洲大陆北方,于挪威大陆与北极点两者之间。植被主要是地衣和苔藓类,仅有的树木是小极地柳和矮桦木。该地区采集的植被光谱数据集主要是基于北极斯瓦尔巴群岛新奥尔松地区283个样点的先锋植物调查,调查时间为2018年7月6-22日,采集地点包括伦敦岛,黄河站区和冰川前,为北极苔原区植物分布和变化研究提供本底信息。
徐希燕
数据来源于联合国粮农组织(FAO)和维也纳国际应用系统研究所(IIASA)所构建的世界土壤数据库(Harmonized World Soil Database version 1.1 )(HWSD). 中国境内数据源为第二次全国土地调查南京土壤所所提供的1:100万土壤数据。 该数据可为建模者提供模型输入参数,农业角度可用来研究生态农业分区,粮食安全和气候变化等。数据格式:grid栅格格式,投影为WGS84。采用的土壤分类系统主要为FAO-90。 土壤属性表主要字段包括: SU_SYM90(FAO90土壤分类系统中土壤名称); SU_SYM85(FAO85分类); T_TEXTURE(顶层土壤质地); DRAINAGE(19.5); REF_DEPTH(土壤参考深度); AWC_CLASS(19.5); AWC_CLASS(土壤有效水含量); PHASE1: Real (土壤相位); PHASE2: String (土壤相位); ROOTS: String (到土壤底部存在障碍的深度分类); SWR: String (土壤含水量特征); ADD_PROP: Real (土壤单元中与农业用途有关的特定土壤类型); T_GRAVEL: Real (碎石体积百分比); T_SAND: Real (沙含量); T_SILT: Real (淤泥含量); T_CLAY: Real (粘土含量); T_USDA_TEX: Real (USDA土壤质地分类); T_REF_BULK: Real (土壤容重); T_OC: Real (有机碳含量); T_PH_H2O: Real (酸碱度) T_CEC_CLAY: Real (粘性层土壤的阳离子交换能力); T_CEC_SOIL: Real (土壤的阳离子交换能力) T_BS: Real (基本饱和度); T_TEB: Real (交换性盐基); T_CACO3: Real (碳酸盐或石灰含量) T_CASO4: Real (硫酸盐含量); T_ESP: Real (可交换钠盐); T_ECE: Real (电导率)。 其中以T_开头属性字段表示上层土壤属性(0-30cm),以S_开头属性字段表示下层土壤属性(30-100cm)。 具体属性值代表何意义请参考文件夹下说明文档*.pdf及数据库*.mdb。
Food and Agriculture Organization of the United Nations(FAO), aa
结合Landsat影像(4215景)、地形图,利用半自动水体提取及人工目视检查编辑,完成了过去60多年来(1960s, 1970s, 1990, 1995, 2000, 2005, 2010, 2015, 2020)详细的中国湖泊(大于1平方公里)数量与面积变化研究。从1960s到2020年,中国湖泊总数量(≥ 1 km^2)从2127个增加到2621个,面积从68537 km^2扩张到82302 km^2 。
张国庆
本数据集是建立在青藏高原基础上的高原土壤水分和土壤温度观测数据,用于量化粗分辨率卫星和土壤水分和土壤温度模型产物的不确定性。青藏高原土壤温湿度观测数据(Tibet-Obs)由四个区域尺度的原位参考网络组成,包括寒冷半干旱气候的那曲网络,寒冷潮湿气候的玛曲网络和寒冷干旱的阿里网络,以及帕里网络。这些网络提供了对青藏高原不同气候和地表水文气象条件的代表性覆盖。 - 时间分辨率:逐时 - 空间分辨率:点测量 - 测量精度:土壤水分,0.00001;土壤温度,0.1℃;数据集尺寸:标称深度为5,10,20,40和80厘米的土壤水分和温度统计值 - 单位:土壤水分,cm ^ 3 cm ^ -3; 土壤温度, ℃
Bob Su, 阳坤
该数据集包含了2018年长江源区人工采集的土地覆盖及植被类型地面验证点数据集。数据采集中,以用地类型相对较为均一、完整的斑块作为主要采集对象,在区分其他用地类型及植被类型时相对较易识别和辨识,在地物验证中具有较好的代表性。每个样地首先利用差分GPS仪记录经度(度分秒)、纬度(度分秒)、海拔(0.1米)、采集时间等位置信息,然后以人工目视识别的办法记录主要用地类型和性质、特征、建群种等属性信息,以便回实验室验证和核对。最后,对每个样地拍摄不少于1张的景观照片。在本次采集中,90%以上的样点采集了2张及以上实景照片,以便于在土地利用分类及植被类型提取中进行验证和核查。最后,通过与Google地图的位置核对,数据经过了两轮检验和核查,保证了验证点属性的绝对正确性。
王旭峰
该数据集包含了2018年8月黄河源区(扎陵湖北面)人工采集的土地覆盖及植被类型地面验证点数据集。数据采集中,以用地类型相对较为均一、完整的斑块作为主要采集对象,在区分其他用地类型及植被类型时相对较易识别和辨识,在地物验证中具有较好的代表性。每个样地首先利用差分GPS仪记录经度(度分秒)、纬度(度分秒)、海拔(0.1米)、采集时间等位置信息,然后以人工目视识别的办法记录主要用地类型和性质、特征、建群种等属性信息,以便回实验室验证和核对。最后,对每个样地拍摄不少于1张的景观照片。在本次采集中,90%以上的样点采集了2张及以上实景照片,以便于在土地利用分类及植被类型提取中进行验证和核查。最后,通过与Google地图的位置核对,数据经过了两轮检验和核查,保证了验证点属性的绝对正确性。
魏彦强, 王旭峰
该数据集包含了2018年可可西里人工采集的土地覆盖地面验证点数据集。数据采集中,以用地类型相对较为均一、完整的斑块作为主要采集对象,在区分其他用地类型及植被类型时相对较易识别和辨识,在地物验证中具有较好的代表性。每个样地首先利用差分GPS仪记录经度(度分秒)、纬度(度分秒)、海拔(0.1米)、采集时间等位置信息,然后以人工目视识别的办法记录主要用地类型和性质、特征、建群种等属性信息,以便回实验室验证和核对。最后,对每个样地拍摄不少于1张的景观照片。在本次采集中,90%以上的样点采集了2张及以上实景照片,以便于在土地利用分类及植被类型提取中进行验证和核查。最后,通过与Google地图的位置核对,数据经过了两轮检验和核查,保证了验证点属性的绝对正确性。
王旭峰
该数据集包含2014年07月23日至2014年08月18日在黑河下游混合林站和超级站观测的热像仪组分温度数据。观测地点坐标分别为101.1335E、41.9903N和101.1374E、42.0012N,海拔约874m。在混合林站和超级站分别使用Testo890-2(热红外图像:640 × 480,可见光2048 × 1536)和Testo875-2i(热红外图像:160 × 120,可见光640 × 480)热像仪,以通量塔为中心,在10m高度处,拍摄塔周围的地表亮温和可见光图像。在混合林站的观测方向为东北、东、东南、西南和西北,在超级站的观测方向为东北、东南、西南和西北。观测时间范围主要为晴空日期的10:00至16:00;各次的观测时间为整点和MODIS、Landsat 8过境时;8月4日的拍摄为配合航空飞行,观测间隔约为10min。
周纪, 李明松, 马晋
该数据集包含2014年07月22日至2016年07月19日在黑河下游混合林站和超级站观测的组分温度数据。测量地点坐标分别为101.1335E、41.9903N和101.1374E、42.0012N,海拔约874m。所使用的红外辐射计型号为SI-111,数采为CR800。混合林站使用两支传感器分别观测光照胡杨(南侧)和阴影胡杨(北侧)的组分温度。两支传感器架设高约5m,距目标约1m,水平观测。超级站使用两支传感器分别观测裸土和柽柳的组分温度。观测裸土的传感器架设高度约2m,观测天顶角约45°;观测柽柳的传感器架设高度约1m,距被测目标约0.5m,水平观测。
周纪, 李明松, 马晋
黑河流域上游土壤容重,孔隙度,含水量,水分特征曲线,饱和导水率,颗粒分析,入渗率,以及采样点位置信息。 1、数据为2014年针对2012年补充取样,用环刀取原状土; 2、该土壤容重为土壤干容重,采用烘干法测量。将野外采集的原状环刀土样在烘箱中以105℃恒温24小时,土壤干重除以土壤体积(100立方厘米),单位:g/cm3 。 3、土壤孔隙度,根据土壤容重与土壤孔隙度的关系得到;, 4、土壤入渗分析数据集,数据为2013-2014年野外实验测量数据。 5、入渗数据是用“MINI DISK PORTABLE TENSION INFILTROMETER”进行测量,得到一定负压下的近似饱和导水率。 6、土壤粒度数据是在兰州大学西部教育部重点实验室粒度实验室进行测量。测量仪器为马尔文激光粒度仪MS2000。 7、饱和导水率是依据依艳丽(2009)的定水头发自制仪器进行测量。使用马利奥特瓶在实验过程中始终保持定水头;同时最后将当时测量的Ks转化为10℃时的Ks值进行分析计算。 8、土壤含水量数据是用ECH2O进行测量,包括5层的土壤含水量、土壤温度。 9、水分特征曲线采用离心机法测量:将野外采集的环刀原状土放入离心机,分别用转速0,310,980,1700,2190,2770,3100,5370,6930,8200,11600测量每次的转子重量得到。
贺缠生
数据集包括以下土壤理化性质:pH值、有机质含量、阳离子交换量、根系丰度、总氮(N)、总磷(P)、总钾(K)、碱解氮、速效磷、速效钾、可交换H+、Al3+、Ca2+、Mg2+、K+、Na+、土层厚度、土壤剖面深度、砂、淤泥和C。铺设部分、岩石碎片、体积密度、孔隙、结构、稠度和土壤颜色。提供了质量控制信息(QC)。 分辨率为30弧秒(赤道处约1公里)。土壤性质的垂直变化由8层记录,深度为2.3 m(即0-0.045-0.091、0.091-0.166、0.166-0.289、0.289-0.493、0.493-0.829、0.829-1.383和1.383-2.296 m),以便于在普通土地模型和社区土地模型(CLM)中使用。 数据采用NetCDF格式存储,数据文件名称及其说明如下: 1.THSCH.nc: Saturated water content of FCH 2.PSI_S.nc: Saturated capillary potential of FCH 3.LAMBDA.nc: Pore size distribution index of FCH 4.K_SCH.nc: Saturate hydraulic conductivity of FCH 5.THR.nc: Residual moisture content of FGM 6.THSGM.nc: Saturated water content of FGM 7.ALPHA.nc: The inverse of the air-entry value of FGM 8.N.nc: The shape parameter of FGM 9.L.nc: The pore-connectivity parameter of FGM 10.K_SVG.nc: Saturated hydraulic conductivity of FGM 11.TH33.nc: Water content at -33 kPa of suction pressure, or field capacity 12.TH1500.nc: Water content at -1500 kPa of suction pressure, or permanent wilting point
戴永久, 上官微
使用Sentine-1 SAR 数据对青藏高原黑河流域野牛沟冻土进行监测。采用2014~2018年野牛沟区域Sentine-1 SAR影像,利用了基于分布式雷达目标的小基线集时序InSAR(DSs-SBAS)冻土形变监测方法,结合SAR后向散射系数,MODIS地表温度和Stefan模型,估算了研究区活动层厚度。结果表明活动层厚度在0.8米至6.6米之间,平均值约为3.3米。对开展大范围、高分辨监测具有十分重要的意义。
江利明
全球气候变暖及人类活动导致青藏高原大面积冻土退化、热融滑塌等问题,严重影响了多年冻土区工程建设和生态环境。以青藏高原黑河流域俄博岭的冻土为研究区,基于高分辨率卫星影像,利用机器学习面向对象分类技术提取研究区内热融滑塌信息,结果表明2009年至2019年研究区热融滑塌数量从12条增至16条,总面积由14718.9平方米增至28579.5平方米,增加了近两倍。高空间分辨率遥感与面向对象分类方法相结合在冻土热融滑塌监测中具有广阔的应用前景。
江利明
本数据是通过建立长江黄河源WEB-DHM分布式水文模型,以气温、降水、气压等作为输入数据,以GAME-TIBET数据作为验证数据,模拟输出的5km逐月水文数据集,包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。数据是基于WEB-DHM分布式水文模型,以气温、降水、气温等(源自itp-forcing和CMA)为输入数据,以GLASS、MODIA、AVHRR为植被数据,SOILGRID及FAO为土壤参数建立起的模型,并通过对径流、土壤温湿度的率定与验证获得的1998-2017年长江黄河源5公里逐月格网径流与蒸发。若asc无法在arcmap中正常打开,请将asc文件前5行顶格。
王磊
DEM是数字高程模型的英文简称(Digital Elevation Model)是流域地形、地物识别的重要原始资料。DEM 的原理是将流域划分为m 行n列的四边形(CELL),计算每个四边形的平均高程,然后以二维矩阵的方式存储高程。由于DEM 数据能够反映一定分辨率的局部地形特征,因此通过DEM 可提取大量的地表形态信息,这些信息包含流域网格单元的坡度、坡向以及单元格之间的关系等。同时根据一定的算法可以确定地表水流路径、河流网络和流域的边界。因此从DEM 提取流域特征,一个良好的流域结构模式是设计算法的前提和关键。 高程数据图是根据中国1:25万等高线和高程点形成的1km数据,包括DEM、山影(hillshade)、坡度(Slope)、坡向(Aspect)图 数据集投影: 两种投影方式 : 正轴割圆锥等面积投影 Albers Conical Equal Area(105、25、47) 大地坐标WGS84坐标系
汤国安
本数据集根据最新发布的NOAA全球模拟和绘图项目(GIMMS,Global Inventory Monitoring and Modeling System)长序列(1981-2013)均一化植被指数产品,版本号3g,先将NDVI数据产品从1/12度空间分辨率重采样到0.5度,然后对每年的时间序列采用double-logistic方法进行平滑,并计算平滑后的曲率,选取春季曲率最大值作为植被的春季返青期,该数据可分析泛北极植被春季物候的时空特征。
徐希燕
该数据集包含了2018年8月31日至2018年12月24日青海湖流域地表过程综合观测网高寒草甸草原混合草原超级站气象要素梯度观测系统数据。站点位于青海省天峻县苏里路旁侧,下垫面是高寒草甸和高寒草原的混合。观测点经纬度为:东经 98°35′41.62″E,北纬 37°42′11.47″N,海拔3718m。风速/风向、空气温度、相对湿度传感器分别架设在3m、5m、10m、15m、20m、30m、40m处,共7层,朝向正北;气压计安装在3m处;翻斗式雨量计安装在塔西偏北侧10m平台上;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤热流板(自校正式)(3块)依次埋设在地下6cm处,朝向正南距离塔体2m处;土壤温度探头埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和400cm处,在距离气象塔2m的正东方;土壤水分传感器分别埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和400cm处,在距离气象塔2m的正东方;光合有效辐射仪安装在6m处,探头垂直向上和向下方向各一个,朝向正南。 观测项目有:风速(WS_3m、WS_5m、WS_10m、WS_15m、WS_20m、WS_30m、WS_40m)(单位:米/秒)、风向(WD_3m、WD_5m、WD_10m、WD_15m、WD_20m、WD_30m、WD_40m)(单位:度)、空气温湿度(Ta_3m、Ta_5m、Ta_10m、Ta_15m、Ta_20m、Ta_30m、Ta_40m和RH_3m、RH_5m、RH_10m、RH_15m、RH_20m、RH_30m、RH_40m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_400cm)(单位:百分比)、土壤温度(Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_400cm)(单位:摄氏度) 、向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018/8/31 10:30。
李小雁
植被调查数据是研究生态系统结构与功能必不可少的数据。藏北地区蕴含广袤的草地生态系统,主要包括高寒草甸、高寒草地、以及高寒荒漠化的草地。由于独特的地理位置以及高海拔缺氧的环境条件,在藏北高原的群落调查数据较为稀少。本课题组基于前期工作的积累,在2017年生长季对整个藏北高原15个县域开展了较为全面的植被调查。本数据集包括藏北样带上从那曲到日土县23个采样点的围栏内外的生物量数据。本数据集可用于生产力的空间分析与模型的校准工作。
张宪洲, 牛犇
本数据集根据NASA EOSDIS LP DAAC 和美国地质调查 USGS EROS共同发布的第六版MODIS均一化植被指数产品(2001-2014)。NDVI的时间分辨率是16天,空间分辨率0.05度,我们先将NDVI数据产品从0.05度空间分辨率重采样到0.5度,然后对每年的时间序列采用double-logistic方法进行平滑,并计算平滑后的曲率,选取春季曲率最大值作为植被的春季返青期,该数据可分析泛北极植被春季物候的时空特征。
美国国家航空航天局, 徐希燕
该数据集为全球生态系统呼吸数据,包含生态系统自养呼吸(Ra)和异养呼吸(Rh)两部分,由耦合模式比较计划第6阶段(CMIP6)中CNRM-CM6-1模式在Historical情景下模拟得到。数据时间范围为1850-2014年,时间分辨率为月,空间分辨率约为1.406°×1.389°。模拟数据详细说明可见链接http://www.umr-cnrm.fr/cmip6/spip.php?article11。
美国气候模式诊断和对比计划委员会
该数据集包含了2018年1月1日至2018年10月12日青海湖流域水文气象观测网青海湖鱼雷发射基地站气象要素梯度观测系统数据。站点位于青海省青海湖二郎剑景区鱼雷发射基地,下垫面是青海湖水面。观测点经纬度为:东经 100° 29' 59.726'' E,北纬 36° 35' 27.337'' N,海拔3209m。风速/风向架设在距湖面14m处,共1层,朝向正北;空气温度、相对湿度传感器分别架设在距湖面12m、12.5m处,共2层,朝向正北;翻斗式雨量计安装在距湖面10m处;四分量辐射仪安装在距湖面10m处,朝向正南;一个红外温度计安装在距湖面10m处,朝向正南,探头朝向是垂直向下;湖水温度探头设在水下0.2, 0.5, 1.0, 2.0, and 3.0 m处;光合有效辐射仪安装在距湖面10m处,探头朝向是垂直向下,朝向正南。 观测项目有:风速(WS_14m)(单位:米/秒)、风向(WD_14m)(单位:度)、空气温湿度(Ta_12m、Ta_12.5m和RH_12m、RH_12.5m)(单位:摄氏度、百分比)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、湖表辐射温度(IRT_1)(单位:摄氏度)、湖水温度(Tw_20cm、Tw_50cm、Tw_100cm、Tw_200cm、Tw_300cm)(单位:摄氏度) 、光合有效辐射(PAR)(单位:微摩尔/平方米秒)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;2018.1.1-10.12由于由于采集器的问题,除四分量外的气象数据均无记录;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018-1-1 10:30。
李小雁
该数据集是三极地区9个通量站点的30分钟涡度相关通量观测数据,包括生态系统净碳交换量(NEE)、总初级生产力(GPP)和生态系统呼吸(ER)数据,时间范围覆盖2000-2016年。该数据预处理主要步骤包括野点去除(±3σ)、坐标轴旋转(三维风旋转)、Webb-Pearman-Leuning校正、异常值剔除、碳通量插补与分解等,缺失数据通过CO2通量值(Fc)与环境因子之间的非线性经验公式进行插补。
张扬建, 牛犇
该数据集包含2018年6月5日至12月15日黑河流域地表过程综合观测网中游大满超级站的物候相机观测数据,该仪器由北京师范大学自主研发并进行处理。物候相机集成数据获取与数据传输功能。该物候相机采用垂直向下的方式采集数据,拍摄数据分辨率为1280*720,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集包括相对绿度指数(GCC)、物候期及覆盖度(FC)。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018)。
屈永华, 徐自为
该数据集包含了2018年1月1日至2018年12月31日黑河流域地表过程综合观测网中游大满超级站宇宙射线观测系统数据。站点位于甘肃省张掖市大满灌区农田内,下垫面是玉米田。观测点的经纬度是100.3722E, 38.8555N,海拔1556m。仪器探头底部距地面0.5m,采样频率是1小时。 宇宙射线仪器的原始观测项目包括:电压Batt(V)、温度T(℃)、相对湿度RH(%)、气压P(hPa)、快中子数N1C(个/小时)、热中子数N2C(个/小时)、快中子采样时间N1ET(s)及热中子采样时间N2ET(s)。发布的数据为经过处理计算后的数据,数据表头包括:Date Time(日期 时间)、P(气压 hPa)、N1C(快中子数 个/小时)、N1C_cor(气压订正的快中子数 个/小时)和VWC(土壤体积含水量 %),其处理的主要步骤包括: 1) 数据筛选 数据筛选共四条标准:(1)剔除电压小于和等于11.8伏特的数据;(2)剔除空气相对湿度大于和等于80%的数据;(3)剔除采样时间间隔不在60±1分钟内的数据;(4) 剔除快中子数较前后一小时变化大于200的数据。剔除及缺失数据用-6999补充。 2) 气压订正 根据仪器说明手册中提到的快中子气压订正公式,对原始数据进行气压订正,得到订正后的快中子数N1C_cor。 3) 仪器率定 在计算土壤水分的过程中需要对计算公式中的N0进行率定。N0为土壤干燥条件下的快中子数,通常使用测量源区内的土样得到实测土壤水分(或者通过比较密集的土壤水分无线传感器获取)θm(Zreda et al. 2012)和对应时间段内的快中子校正数据N,再通过公式反求得到N0。 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Zhu et al. (2015)。
朱忠礼, 徐自为, 李新, 车涛, 谭俊磊, 任志国, 张阳
该数据集包含2018年6月13日至11月16日黑河流域地表过程综合观测网中游阿柔超级站的物候相机观测数据,该仪器由北京师范大学自主研发并进行处理。物候相机集成数据获取与数据传输功能。该物候相机采用垂直向下的方式采集数据,拍摄数据分辨率为1280*720,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集包括相对绿度指数(Gcc)。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018)。
屈永华, 徐自为
该数据集包含了2018年9月23日至2018年12月31日兰州大学兰州大学寒旱区科学观测网络瓜州站气象要素梯度观测系统数据。站点位于甘肃酒泉瓜州县柳园镇,下垫面是荒漠。观测点的经纬度是95.673E,41.405N,海拔2014m。二维超声风速/风向传感器和空气温湿度传感器分别架设在2m、4m、8m、16m、32m、48m处,共6层,朝向正北;气压计安装在1.5m采集箱内;翻斗式雨量计安装在塔4m处;红外温度计安装在4m处,朝向正南,探头朝向垂直向下;土壤热通量板(自校正式)(2块)依次埋设在塔南侧植被下5cm和10cm处;土壤温/湿/电导率传感器和土壤水势传感器埋设在塔南侧植被下5cm、10cm、20cm、40cm、60cm、80cm处;光合有效辐射传感器、日照时数传感器以及四分量辐射仪安装在4m处,朝向正南。 观测项目有:风速(WS_2m、WS_4m、WS_8m、WS_16m、WS_32m、WS_48m)(单位:米/秒)、风向(WD_2m、WD_4m、WD_8m、WD_16m、WD_32m、WD_48m)(单位:度)、空气温湿度(TA_2m、TA_4m、TA_8m、TA_16m、TA_32m、TA_48m和RH_2m、RH_4m、RH_8m、RH_16m、RH_32m、RH_48m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT)(单位:摄氏度)、土壤热通量(Gs_5cm、Gs_10cm)(单位:瓦/平方米)、土壤水分(Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_60cm、Ms_80cm)(单位:百分比)、土壤温度(Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_60cm、Ts_80cm)(单位:摄氏度) 、土壤水势(SWP_5cm、SWP_10cm、SWP_20cm、SWP_40cm、SWP_60cm、SWP_80cm)(单位:千帕)、土壤电导率(EC_5cm、EC_10cm、EC_20cm、EC_40cm、EC_60cm、EC_80cm)(单位:微西门子/厘米)、光合有效辐射(PAR)(单位:微摩尔/平方米秒)、日照时数(Sun_time)(单位:小时)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min);该地区土壤水势很低,已超出传感器的测量量程;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018-6-10 10:30。
赵长明, 张仁懿
该数据集包含了2018年1月1日至2018年12月31日兰州大学兰州大学寒旱区科学观测网络敦煌站气象要素梯度观测系统数据。站点位于甘肃敦煌西湖,下垫面是湿地。观测点的经纬度是93.709E,40.348N,海拔993m。二维超声风速/风向传感器和空气温湿度传感器分别架设在4m、8m处,朝向正北;气压计安装在1m采集箱内;翻斗式雨量计安装在塔4m处;红外温度计安装在4m处,朝向正南,探头朝向垂直向下;土壤热通量板(自校正式)(2块)依次埋设在塔南侧植被下5cm和10cm处;土壤温/湿/电导率传感器和土壤水势传感器埋设在塔南侧植被下5cm和20cm处;光合有效辐射传感器、日照时数传感器以及四分量辐射仪安装在4m处,朝向正南。 观测项目有:风速(WS_4m、WS_8m)(单位:米/秒)、风向(WD_4m、WD_8m)(单位:度)、空气温湿度(Ta_4m、Ta_8m和RH_2m、RH_4m、RH_8m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT)(单位:摄氏度)、土壤热通量(Gs_5cm、Gs_10cm)(单位:瓦/平方米)、土壤水分(Ms_5cm、Ms_20cm)(单位:百分比)、土壤温度(Ts_5cm、Ts_20cm)(单位:摄氏度) 、土壤水势(SWP_5cm,SWP_20cm)(单位:千帕)、土壤电导率(EC_5cm,EC_20cm)(单位:微西门子/厘米)光合有效辐射(PAR)(单位:微摩尔/平方米秒)、日照时数(Sun_time)(单位:小时)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min);由于采集器故障,1.23-1.24数据丢失;由于塔体倾斜,3.17-5.24部分数据异常或丢失;由于程序故障,空气湿度采集错误;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018-6-10 10:30。
赵长明, 张仁懿
基于第二次全国土壤调查的中国1:1000000比例尺土壤图和8595个土壤剖面图,以及美国农业部(USDA)中国区域土地和气候模拟标准,开发了一个多层土壤粒度分布数据集(砂、粉土和粘土含量)。 采用多边形链接方法,结合土壤剖面和地图多边形之间的距离、剖面的样本大小和土壤分类信息,推导出砂、粉土和粘土的含量分布图。该数据集分辨率为1公里,可用于区域范围内的土地和气候建模。 数据特征 投影:GCS_Krasovsky_1940 覆盖范围:中国 分辨率:0.00833 度(约一公里) 数据格式:FLT, TIFF 取值范围:0%-100% 文件说明 浮点栅格文件包括: sand1.flt, clay1.flt – 表层(0-30cm) 砂粒、粘粒含量。 sand2.flt, clay2.flt – 底层(30-100cm) 砂粒、粘粒含量。 psd.hdr – 头文件: ncols – 列数 nrows – 行数 xllcorner – 左下角纬度 yllcorner – 左下角经度 cellsize – 单元格大小 NODATA_value – 空值 byteorder - LSBFIRST, Least Significant Bit First TIFF 栅格文件包括: sand1.tif, clay1.tif -表层(0-30cm) 砂粒、粘粒含量。 sand2.tif, clay2.tif -底层(30-100cm) 砂粒、粘粒含量。
上官微, 戴永久
该数据集包含了2018年1月1日至2018年12月31日黑河水文气象观测网上游阿柔超级站气象要素梯度观测系统数据。站点位于青海省祁连县阿柔乡草达坂村,下垫面是亚高山山地草甸。观测点的经纬度是100.4643E, 38.0473N,海拔3033m。空气温度、相对湿度、风速传感器分别架设在1m、2m、5m、10m、15m、25m处,共6层,朝向正北;风向传感器架设在10m处,朝向正北;气压计安装在2m处;翻斗式雨量计安装在阿柔超级站28m观测塔上;四分量辐射仪安装在5m处,朝向正南;两个红外温度计安装在5m处,朝向正南,探头朝向是垂直向下;光合有效辐射仪安装在5m处,朝向正南,探头朝向是垂直向上;土壤部分传感器埋设在塔体正南方向2m处,其中土壤热流板(自校正式)(3块)均埋设在地下6cm处;平均土壤温度传感器TCAV埋设在地下2cm、4cm处;土壤温度探头埋设在地表0cm和地下2cm、4cm、6cm、10cm、15cm、20cm、30cm、40cm、60cm、80cm、120cm、160cm、200cm、240cm、280cm、320cm处,其中4cm和10cm这两层有三个重复;土壤水分传感器分别埋设在地下2cm、4cm、6cm、10cm、15cm、20cm、30cm、40cm、60cm、80cm、120cm、160cm、200cm、240cm、280cm、320cm处,其中4cm和10cm这两层有三个重复。 观测项目有:风速(WS_1m、WS_2m、WS_5m、WS_10m、WS_15m、WS_25m)(单位:米/秒)、风向(WD_10m)(单位:度)、空气温湿度(Ta_1m、Ta_2m、Ta_5m、Ta_10m、Ta_15m、Ta_25m和RH_1m、RH_2m、RH_5m、RH_10m、RH_15m、RH_25m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、光合有效辐射(PAR)(单位:微摩尔/平方米秒)、平均土壤温度(TCAV)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_2cm、Ms_4cm_1、Ms_4cm_2、Ms_4cm_3、Ms_6cm、Ms_10cm_1、Ms_10cm_2、Ms_10cm_3、Ms_15cm、Ms_20cm、Ms_30cm、Ms_40cm、Ms_60cm、Ms_80cm、Ms_120cm、Ms_160cm Ms_200cm、Ms_240cm、Ms_280cm、Ms_320cm)(单位:体积含水量,百分比)、土壤温度(Ts_0cm、Ts_2cm、Ts_4cm_1、Ts_4cm_2、Ts_4cm_3、Ts_6cm、Ts_10cm_1、Ts_10cm_2、Ts_10cm_3、Ts_15cm、Ts_20cm、Ts_30cm、Ts_40cm、Ts_60cm、Ts_80cm、Ts_120cm、Ts_160cm Ts_200cm、Ts_240cm、Ts_280cm、Ts_320cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;平均土壤温度TCAV在2.16-3.31和4.15-5.20之间,由于传感器线头接触不良,数据缺失;11-12月份土壤热通量出现一些错误值。(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018-6-10 10:30;(6)命名规则为:AWS+站点名称。 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 李新, 车涛, 徐自为, 张阳, 谭俊磊
该数据集包含了2018年10月18日至2018年12月31日兰州大学兰州大学寒旱区科学观测网络寺大隆站气象要素梯度观测系统数据。站点位于甘肃张掖市肃南县康乐乡,下垫面是森林。观测点的经纬度是99.926E,38.428N,海拔3146m。二维超声风速/风向传感器和空气温湿度传感器分别架设在0.5m、3m、13m、24m、48m处,共5层;气压计安装在1.5m采集箱内;翻斗式雨量计安装在塔24m处;两个红外温度计分别安装在4m(冠层下)、24m(冠层下)处,探头朝向垂直向下;土壤热通量板(自校正式)(2块)依次埋设在植被下5cm和10cm处;土壤温/湿/电导率传感器和土壤水势传感器埋设在塔南侧植被下5cm、10cm、20cm、40cm、60cm处;光合有效辐射传感器分别安装在4m(冠层下)、24m(冠层下)处;日照时数传感器以及四分量辐射仪安装在24m处。 观测项目有:风速(WS_0.5m、WS_3m、WS_13m、WS_24m、WS_48m)(单位:米/秒)、风向(WD_0.5m、WD_3m、WD_13m、WD_24m、WD_48m)(单位:度)、空气温湿度(TA_0.5m、TA_3m、TA_13m、TA_24m、TA_48m和RH_0.5m、RH_3m、RH_13m、RH_24m、RH_48m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_A、IRT_B)(单位:摄氏度)、土壤热通量(Gs_5cm、Gs_10cm)(单位:瓦/平方米)、土壤水分(Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_60cm (单位:百分比)、土壤温度(Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_60cm)(单位:摄氏度) 、土壤水势(SWP_5cm、SWP_10cm、SWP_20cm、SWP_40cm、SWP_60cm)(单位:千帕)、土壤电导率(EC_5cm、EC_10cm、EC_20cm、EC_40cm、EC_60cm)(单位:微西门子/厘米)、光合有效辐射(PAR_A、PAR-B)(单位:微摩尔/平方米秒)、日照时数(Sun_time)(单位:小时)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min);该地区土壤水势很低,已超出传感器的测量量程;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018-6-10 10:30。
赵长明, 张仁懿
该数据集包含2018年5月16日至11月6日黑河流域地表过程综合观测网下游混合林站的物候相机观测数据,该仪器由北京师范大学自主研发并进行处理。物候相机集成数据获取与数据传输功能。该物候相机采用垂直向下的方式采集数据,拍摄数据分辨率为1280*720,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集包括相对绿度指数(Gcc)。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018)。
屈永华, 徐自为
该数据集包含了2018年1月1日至2018年12月31日黑河流域地表过程综合观测网下游四道桥超级站气象要素梯度观测系统数据。站点位于内蒙古额济纳旗达来呼布镇四道桥,下垫面是柽柳。观测点的经纬度是101.1374E, 42.0012N,海拔873m。空气温度、相对湿度、风速传感器分别架设在5m、7m、10m、15m、20m、28m处,共6层,朝向正北;风向传感器架设在15m处,朝向正北;气压计安装在防水箱内;翻斗式雨量计安装在28m处;四分量辐射仪安装在10m处,朝向正南;两个红外温度计安装在10m处,朝向正南,探头朝向是垂直向下;两个光合有效辐射仪安装在10m处,朝向正南,探头垂直向上和向下方向各一个;土壤部分传感器安装在塔体南侧2m处,其中土壤热流板(自校正式)(3块)依次埋设在地下6cm处;平均土壤温度传感器TCAV埋设在地下2cm、4cm处;土壤温度探头埋设在地表0cm和地下2cm、4cm、10cm、20cm、40cm、80cm、120cm、160cm和200cm处;土壤水分传感器分别埋设在地下2cm、4cm、10cm、20cm、40cm、80cm、120cm、160cm和200cm处。 观测项目有:风速(WS_5m、WS_7m、WS_10m、WS_15m、WS_20m、WS_28m)(单位:米/秒)、风向(WD_15m)(单位:度)、空气温湿度(Ta_5m、Ta_7m、Ta_10m、Ta_15m、Ta_20m、Ta_28m和RH_5m、RH_7m、RH_10m、RH_15m、RH_20m、RH_28m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、向上和向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒)、平均土壤温度(TCAV)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_2cm、Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_160cm、Ms_200cm)(单位:体积含水量,百分比)、土壤温度(Ts_0cm、Ts_2cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_160cm、Ts_200cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;1-6月由于传感器的问题,降雨数据出错;7-10月由于接线问题,气压数据出错;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018-9-10 10:30;(6)命名规则为:AWS+站点名称。 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 李新, 车涛, 徐自为, 任志国, 谭俊磊
该数据集包含了2018年6月11日至2018年9月18日的黑河水文气象观测网中游大满超级站叶面积指数观测数据。站点(100.372° E, 38.856° N)位于甘肃省张掖市大满灌区内,海拔1556m,下垫面是玉米。观测样方共计3个,每个样方大小约30m×30m,经纬度范围分别为(100.373297°E~100.374205°E, 38.857871°N~38.858390°N)、(100.373918° E~100.373897°E, 38.854025°N~38.854941°N)、(100.368007°E~100.369044°E, 38.850678°N~38.851580°N)。每个样方内布设5个冠层下节点和1个冠层上节点。 本数据集由叶面积指数无线传感网(LAINet)获取,该仪器原始观测数据为仪器自动获取的每个节点逐日逐小时的光照数据(Level0),利用LAINet软件对原始观测数据进行处理,逐节点计算每天LAI(Level1),进一步对无效值识别与填充,并7天滑动平均消除天气变化对LAI计算的影响(Level2),对有多个LAINet节点的观测子区,节点的均值为该子区的最终观测值(Level3)。 本次发布的数据集为处理后的Level3产品,数据以*.xls格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Qu et al. (2014)。
刘绍民, 屈永华, 徐自为
该数据集包含了2018年1月1日至2018年12月31日兰州大学寒旱区科学观测网络大野口站气象要素梯度观测系统数据。站点位于甘肃张掖大野口排露沟,下垫面是林缘草地。观测点的经纬度是100.286E,38.556N,海拔2703m。二维超声风速/风向传感器和空气温湿度传感器分别架设在8m处;气压计安装在1.5m采集箱内;翻斗式雨量计安装在塔2m处;红外温度计安装在2m处,朝向正南,探头朝向垂直向下;土壤热通量板(自校正式)埋设在塔南侧植被下5cm处;土壤温/湿/电导率传感器和土壤水势传感器埋设在塔南侧植被下5cm处;光合有效辐射传感器、日照时数传感器以及四分量辐射仪安装在2m处,朝向正南。 观测项目有:风速(WS_8m)(单位:米/秒)、风向(WD_8m)(单位:度)、空气温湿度(Ta_8m和RH_8m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT)(单位:摄氏度)、土壤热通量(Gs_5cm)(单位:瓦/平方米)、土壤水分(Ms_5cm)(单位:百分比)、土壤温度(Ts_5cm)(单位:摄氏度) 、土壤水势(SWP_5cm)(单位:千帕)、土壤电导率(EC_5cm)(单位:微西门子/厘米)光合有效辐射(PAR)(单位:微摩尔/平方米秒)、日照时数(Sun_time)(单位:小时)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min);2018.8.29-10.18由于电池箱无保温措施,电池低温供电不稳定,部分时间段数据丢失(1.3-1.6;1.8-1.11;1.14-1.20;1.23-1.30;2.9-2.22;2.28-3.23;3.28-5.12);由于程序故障,空气湿度采集错误;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018-6-10 10:30。
赵长明, 张仁懿
该数据集包含了2018年6月16日至2018年10月18日的黑河水文气象观测网下游四道桥(包括柽柳与胡杨林)叶面积指数观测数据。站点位于内蒙古额济纳旗四道桥,海拔870 m,下垫面是柽柳与胡杨。观测在四道桥超级站(101.1374E, 42.0012N)和混合林站(101.1335E, 41.9903N)旁开展,样方共计2个,每个样方大小约30m×30m,每个样方内布设5个冠层下节点和1个冠层上节点。 本数据集由叶面积指数无线传感网(LAINet)获取,该仪器原始观测数据为仪器自动获取的每个节点逐日逐小时的光照数据(Level0),利用LAINet软件对原始观测数据进行处理,逐节点计算每天LAI(Level1),进一步对无效值识别与填充,并7天滑动平均消除天气变化对LAI计算的影响(Level2),对有多个LAINet节点的观测子区,节点的均值为该子区的最终观测值(Level3)。 本次发布的数据集为处理后的Level3产品,数据以*.xls格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Qu et al. (2014)。
屈永华, 徐自为
该数据集包含2018年6月15日至11月7日黑河流域地表过程综合观测网下游四道桥超级站的物候相机观测数据,该仪器由北京师范大学自主研发并进行处理。物候相机集成数据获取与数据传输功能。该物候相机采用垂直向下的方式采集数据,拍摄数据分辨率为1280*720,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集包括相对绿度指数(Gcc)。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018)。
屈永华, 徐自为
该数据集由三部分组成:①2018年8月16日至8月30日在祁连山石羊河流域上游7条支流及下游青土湖进行的植物样地调查数据;②2018年9月25日至10月3日在黑河、疏勒河流域主要支流进行的植物样地调查数据;③2013年8月18日至2018年8月8日在青海湖与黑河流域的植物样地调查数据。第一部分调查涉及草本、灌木、乔木的生长特性与数量信息;第二部分主要调查乔木,对草本仅作粗略估计;第三部分主要调查草甸植被。 三部分调查依据植被类型设置样地,每个样地至少选取 3 个样方(分乔木、灌木、草本)。其中,草本样方面积为 1m×1m 或 0.5m×0.5m;荒漠灌木样方面积为 10m×10m;森林灌丛面积为 2m×2m;灌木灌丛面积4m×4m;乔木样方面积为20m×20m。在每个样方内进行植物群落调查:乔木样方调查主要调查物种数量、物种多度、20株乔木每木检尺(含株高、胸径、冠幅、活枝下高)、样方内全部乔木胸径;灌木样方主要调查全部灌木的物种数量、多度、灌木冠幅、灌木株高;草本样方主要调查草本物种数量、多度或分盖度、平均株高、总盖度,地上生物量。
赵长明, 张立勋, 黄永梅, 袁建立, 张仁懿
该数据集包含了2018年1月1日至2018年12月31日兰州大学兰州大学寒旱区科学观测网络西营河站气象要素梯度观测系统数据。站点位于青海海北门源县仙米乡讨拉村,下垫面是高寒草甸。观测点的经纬度是101.855E,37.561N,海拔3616m。二维超声风速/风向传感器和空气温湿度传感器分别架设在2m、4m、8m处,共3层,朝向正北;气压计安装在1.5m采集箱内;翻斗式雨量计安装在塔4m处;红外温度计安装在4m处,朝向正南,探头朝向垂直向下;土壤热通量板(自校正式)(2块)依次埋设在塔南侧植被下5cm和10cm处;土壤温/湿/电导率传感器和土壤水势传感器埋设在塔南侧植被下20cm和40cm处;光合有效辐射传感器、日照时数传感器以及四分量辐射仪安装在4m处,朝向正南。 观测项目有:风速(WS_2m、WS_4m、WS_8m)(单位:米/秒)、风向(WD_2m、WD_4m、WD_8m)(单位:度)、空气温湿度(Ta_2m、Ta_4m、Ta_8m和RH_2m、RH_4m、RH_8m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT)(单位:摄氏度)、土壤热通量(Gs_5cm、Gs_10cm)(单位:瓦/平方米)、土壤水分(Ms_20cm、Ms_40cm)(单位:百分比)、土壤温度(Ts_20cm、Ts_40cm)(单位:摄氏度) 、土壤水势(SWP_20cm,SWP_40cm)(单位:千帕)、土壤电导率(EC_20cm、EC_40cm)(单位:微西门子/厘米)、光合有效辐射(PAR)(单位:微摩尔/平方米秒)、日照时数(Sun_time)(单位:小时)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min);2018.8.29-10.18由于电池箱进水导致的供电不稳定,气象数据丢失严重未入库;2018.10.18日起2m超声风速/风向传感器故障,该位置风速数据错误;雨量筒程序错误,全年数据无效;由于程序故障,2018.1.1-3.2空气湿度采集错误;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018-6-10 10:30。
赵长明, 张仁懿
该数据集包含了2018年1月1日至2018年12月31日兰州大学寒旱区科学观测网络连城站气象要素梯度观测系统数据。站点位于甘肃永登连城吐鲁沟国家森林公园吐鲁坪,下垫面是森林。观测点的经纬度是102.737E,36.692N,海拔2903m。二维超声风速/风向传感器和空气温湿度传感器分别架设在4m、8m处,共2层,朝向正北;气压计安装在1.5m采集箱内;翻斗式雨量计安装在塔2m处;红外温度计安装在2m处,朝向正南,探头朝向垂直向下;土壤热通量板(自校正式)(2块)依次埋设在塔南侧植被下5cm和10cm处;土壤温/湿/电导率传感器和土壤水势传感器埋设在塔南侧植被下5cm和10cm处;光合有效辐射传感器、日照时数传感器以及四分量辐射仪安装在4m处,朝向正南。 观测项目有:风速(WS_2m、WS_4m、WS_8m)(单位:米/秒)、风向(WD_2m、WD_4m、WD_8m)(单位:度)、空气温湿度(Ta_4m、Ta_8m和RH_4m、RH_8m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT)(单位:摄氏度)、土壤热通量(Gs_5cm、Gs_10cm)(单位:瓦/平方米)、土壤水分(Ms_5cm、Ms_10cm)(单位:百分比)、土壤温度(Ts_5cm、Ts_10cm)(单位:摄氏度) 、土壤水势(SWP_5cm,SWP_10cm)(单位:千帕)、土壤电导率(EC_5cm、EC_10cm)(单位:微西门子/厘米)、光合有效辐射(PAR)(单位:微摩尔/平方米秒)、日照时数(Sun_time)(单位:小时)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min);2018.5.30-7.6由于供电故障数据丢失;2018.1.1-5.30土壤热通量(5cm)传感器因鼠害断线,无有效数值;由于程序故障,空气湿度采集错误;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018-6-10 10:30。
赵长明, 张仁懿
该数据集包含了2018年1月1日至2018年12月31日兰州大学兰州大学寒旱区科学观测网络临泽站气象要素梯度观测系统数据。站点位于甘肃张掖临泽新华镇古寨村,下垫面是农田。观测点的经纬度是100.062E,39.238N,海拔1402m。二维超声风速/风向传感器和空气温湿度传感器分别架设在4m、8m处,共2层,朝向正北;气压计安装在1m采集箱内;翻斗式雨量计安装在塔4m处;红外温度计安装在4m处,朝向正南,探头朝向垂直向下;土壤热通量板(自校正式)(2块)依次埋设在塔南侧植被下5cm和10cm处;土壤温/湿/电导率传感器和土壤水势传感器埋设在塔南侧植被下20cm和40cm处;光合有效辐射传感器、日照时数传感器以及四分量辐射仪安装在4m处,朝向正南。 观测项目有:风速(WS_4m、WS_8m)(单位:米/秒)、风向(WD_4m、WD_8m)(单位:度)、空气温湿度(Ta_4m、Ta_8m和RH_4m、RH_8m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT)(单位:摄氏度)、土壤热通量(Gs_5cm、Gs_10cm)(单位:瓦/平方米)、土壤水分(Ms_5cm、Ms_10cm)(单位:百分比)、土壤温度(Ts_5cm、Ts_10cm)(单位:摄氏度) 、土壤水势(SWP_5cm,SWP_10cm)(单位:千帕)、土壤电导率(EC_5cm、EC_10cm)(单位:微西门子/厘米)、光合有效辐射(PAR)(单位:微摩尔/平方米秒)、日照时数(Sun_time)(单位:小时)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min);雨量筒程序错误,雨量数据无效;由于程序故障,空气湿度采集错误;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018-6-10 10:30。
赵长明, 张仁懿
植被功能型(PFT)是根据植物种的生态系统功能及其资源利用方式而对宠大的植物种进行的组合,每一种植被功能型共享相似的植物属性,是将植物种的多样性简化为植物功能和结构的多样性。植被功能型的概念受到生态学家特别是生态系统建模者的推崇。其基本假设是全球重要的生态系统动态可以通过有限的植被功能型表达和模拟。目前,植被功能型已被广泛用于生物地理模型、生物地球化学模型、陆面过程模型和全球动态植被模型,如美国国家大气研究中心(NCAR)的陆面过程模型已经将原来用土地覆盖信息变为应用植被功能型图(Bonan et al., 2002)。植被功能型已经被用于动态全球植被模型(DGVM)中,用以预测全球变化情景下生态系统结构与功能的变化。 参考全球植被功能型分类体系,根据模型需求,将土地覆盖类型与植被功能型合并考虑,确定该数据的分类体系下表。 1、植被功能型分类体系 1 Needleleaf evergreen tree, temperate 2 Needleleaf evergreen tree, boreal 3 Needleleaf deciduous tree 4 Broadleaf evergreen tree, tropical 5 Broadleaf evergreen tree, temperate 6 Broadleaf deciduous tree, tropical 7 Broadleaf deciduous tree, temperate 8 Broadleaf deciduous tree, boreal 9 Broadleaf evergreen shrub, temperate 10 Broadleaf deciduous shrub, temperate 11 Broadleaf deciduous shrub, boreal 12 C3 grass, arctic 13 C3 grass 14 C4 grass 15 Crop 16 Permanent wetlands 17 Urban and built-up lands 18 Snow and ice 19 Barren or sparsely vegetated lands 20 Bodies of water 2、制图方法 中国1公里植被功能型图是根据Bonan等(Bonan et al., 2002)提出的土地覆盖与植被功能型转换的气候规则,对MICLCover土地覆盖图(冉有华 等,2009;Ran et al., 2012)进行转换。MICLCover土地覆盖图是融合了2000年中国1:10万土地利用数据、中国植被图集(1:100万)的植被型、中国1:10万冰川分布图、中国1:100万沼泽湿地图和MODIS 2001年土地覆盖产品(MOD12Q1)的最新发布的土地覆盖数据,采用IGBP土地覆盖分类系统。评价显示,其可能是目前存在的全国1km尺度上精度最高的土地覆盖图。气候数据利用何杰等(2010)发展的1981-2008年的空间分辨率为0.1度、时间分辨率为3小时的中国大气驱动数据,是我国现存的在全国尺度上具有最高时空分辨率的气候数据,该数据融合了Princeton 陆面模式驱动数据(Sheffield et al., 2006)、GEWEX-SRB 辐射数据(Pinker et al., 2003)、TRMM 3B42 和APHRODITE 降水数据以及中国气象局740个气象台站的观测数据。根据RanYouhua等(2010)的评价结果,GLC2000在目前的全球土地覆盖数据集中,具有相对较高的精度,且其分类系统中没有混交林这一类,因此MICLCover土地覆盖图中的混交林利用GLC2000 (Bartholome and Belward, 2005; 徐文婷 等,2005)中的信息进行了替换。该数据可用于陆面过程模型等相关研究中。
冉有华, 李新
湖泊的形成与消失、扩张与收缩对生态环境演化和社会经济发展都有重要影响。由于受气候、生态环境和人类活动等因素的综合影响,湖泊水域范围的变化速度快、幅度大,对观测的频率和分布都有很高的要求。近几十年以来,卫星遥感技术以其快速、覆盖面广、成本低廉等优点,为较大区域的湖泊动态监测提供了重要数据基础。针对大范围、高精度、长时间序列的湖泊变化分析对遥感数据时空分辨率的需求,本数据集基于 Landsat 卫星数据的自动湖泊提取方法(Feng et al., 2015),利用 2000 年以来的 Landsat 多颗卫星的观测数据,收集了2000 年以来的云量小于 80%的所有Landsat 数据,获得共 96278 景影像(约 25T 数据量),结合高性能数据存储和处理能力,提取了青藏高原和中亚地区 2000-2015 年湖泊分布记录,形成了时空一致的逐月水域范围数据集。利用分层随机采样采集样点,通过人工解译,获取能够代表不同时空分布的验证样点。评价结果表明:研究区时间序列水体数据总体精度为 99.45%(±0.59),水体用户精度(错分)为 85.37% (±3.74),制图精度(漏分)为 98.17%(±1.05)。
冯敏, 车向红
数字高程模型(Digital Elevation Model),简称DEM,是通过有限的地形高程数据实现对地面地形的数字化模拟(即地形表面形态的数字化表达),它是用一组有序数值阵列形式表示地面高程的一种实体地面模型。 第三极地区为40°1′52″N~23°11′59″N、105°43′45″E~61°28′45″E的世界屋脊生态地理区,其中包括青藏高原、横断山脉、喜马拉雅山脉、兴都库什山脉、帕米尔高原。划分依据:以海拔高度4000 m为基准,融合地形坡度,参考山体完整性和生态系统整体性,空间分辨率为0.008°×0.008°。
National Aeronautics and Space Administration
第三极1:100万水系数据集包括:第三极地区不同等级的线型水系(Tibet_water_line)、多边形水系(Tibet_water_poly)矢量空间数据及相关属性数据:名称(Name)、类型(Type)、水系长度(leng)、水系面积(Area)。 数据来自1:100万ADC_WorldMap全球数据集,数据经过拓扑,入库是全面、最新和无缝的地理数字数据。 世界地图坐标系统是经纬度,D_WGS_1984基准面。
ADC WorldMap
地表蒸散发(Evapotranspiration,ET)是地球系统中水循环和能量传输的重要环节,地表蒸散发的准确获取有助于全球气候变化、作物估产、干旱监测等研究,并且对区域乃至全球水资源规划管理具有重要的指导意义。随着遥感技术的发展,遥感估算地表蒸散发已成为获取区域与全球蒸散发的一个有效途径,目前多种中低分辨率地表蒸散发产品已业务化生产和发布,但遥感估算地表蒸散发模型在模型机理、输入数据、参数化方案等方面仍存在许多不确定性,因此,需要通过真实性检验来定量评价遥感估算地表蒸散发产品的精度。但在真实性检验过程中,存在地表蒸散发遥感估算值与站点观测值的空间尺度不匹配问题,因此卫星像元尺度地表蒸散发的相对真值获取是关键。 以黑河流域综合观测网2012年6-9月中游“非均匀下垫面地表蒸散发的多尺度观测试验”中通量观测矩阵的4(村庄)、5(玉米)、6(玉米)、7(玉米)、8(玉米)、11(玉米)、12(玉米)、13(玉米)、14(玉米)、15(玉米)、17(果园)号站和2014-2015年1-12月下游绿洲胡杨林站(胡杨林)、混合林站(柽柳/胡杨)、裸地站(裸地)、农田站(甜瓜)、四道桥站(柽柳)观测数据(自动气象站、涡动相关仪、大孔径闪烁仪等)为基础,以高分辨率遥感数据(地表温度、植被指数、净辐射等)作为辅助数据,分布图见图1,考虑地表异质性对ET尺度扩展的影响,通过直接检验和交叉检验对6种尺度扩展方法(面积权重法、基于Priestley-Taylor公式的尺度扩展方法、不等权重面到面回归克里格方法、人工神经网络、随机森林、深度信念网络)进行比较和分析,最终优选一种综合的方法(在下垫面均匀时,采用面积权重法;在下垫面中度非均匀时,采用不等权重面到面回归克里格方法;下垫面高度非均匀时采用随机森林方法)分别获取中游和下游通量观测矩阵区域MODIS卫星过境瞬时/日的地表蒸散发像元尺度相对真值(空间分辨率为1km),并通过与大孔径闪烁仪观测值(参考值)进行验证分析,结果表明:该数据集整体精度良好,中游卫星像元尺度相对真值瞬时和逐日的平均绝对百分误差(MAPE)分别为2.6%和4.5%,下游卫星像元尺度相对真值瞬时和逐日的MAPE分别为9.7%和12.7%,可以用来验证其它遥感产品。该像元地表蒸散发数据既能解决遥感估算值与站点观测值的空间不匹配问题,又能表征验证过程的不确定性。所有站点信息和尺度扩展方法请参考Li et al. (2018)和 Liu et al. (2016),观测数据处理请参考Liu et al. (2016)。
刘绍民, 李相, 徐自为
第三极1:100万山脉数据集包括:第三极地区山脉(Tibet_Mountains)矢量空间分布数据及相关属性数据:名称(Name)、山脉所在国家名称(CNTRY_NAME)、山脉所在国家简称(CNTRY_CODE)、纬度(LATITUDE)、经度(LONGITUDE) 数据来自1:100万ADC_WorldMap全球数据集,数据经过拓扑,入库是全面、最新和无缝的地理数字数据。 世界地图坐标系统是经纬度,D_WGS_1984基准面。
ADC WorldMap
第三极1:100万机场及跑道分布数据集包括:机场(Tibet_Airport)及机场跑道(Tibet_Airport_runways)矢量空间数据及相关属性数据:机场名称(Name)、机场国家名称(CNTRY_NAME)、机场国家缩写(CNTRY_CODE)、纬度(LATITUDE)、经度(LONGITUDE)。 数据来自1:100万ADC_WorldMap全球数据集,数据经过拓扑,入库是全面、最新和无缝的地理数字数据。 世界地图坐标系统是经纬度,D_WGS_1984基准面。
ADC WorldMap
第三极1:100万居民点数据集包括第三极地区居民点(Tibet_Cities)、首都居民点(Tibet_Capitals)、城市人口大于75k的居民点(Tibet_Cities_up_to_75K)等矢量空间数据及相关属性数据:城市名称(ENG_NAME)、城市人口(CITY_POP)等属性。 数据来自1:100万ADC_WorldMap全球数据集,数据经过拓扑,入库是全面、最新和无缝的地理数字数据。 世界地图坐标系统是经纬度,D_WGS_1984基准面。
ADC WorldMap
该数据集提供了南极洲1公里分辨率数字高程模型(DEM)。DEM结合了欧洲遥感卫星-1 (ERS-1)卫星雷达高度计(SRA)和冰、云和陆地高度计(ICESat)地球科学激光高度计系统(GLAS)的测量数据。ERS-1数据来自1994年3月开始的168天的两个长重复周期,GLAS数据来自2003年2月20日至2008年3月21日。数据集大约为240mb,由两个网格化二进制文件和两个用于可视化图像(ENVI)头文件的环境组成,可以使用ENVI或其他类似软件包查看。这些数据可以通过FTP获得。
National Aeronautics and Space Administration
南极1:100万山脉数据集包括南极范围内山脉(Arctic_Mountains)矢量空间分布数据及相关属性数据:名称(Name)、山脉所在国家名称(CNTRY_NAME)、山脉所在国家简称(CNTRY_CODE)、纬度(LATITUDE)、经度(LONGITUDE) 数据来自1:100万ADC_WorldMap全球数据集,数据经过拓扑,入库是全面、最新和无缝的地理数字数据。 世界地图坐标系统是经纬度,WGS84基准面,南极地区数据集为南极专用投影参数(South_Pole_Stereographic)。
ADC WorldMap
南极1:100万机场分布数据集包括南极范围内机场(Antarctic_Airport)及机场跑道(Antarctic_Airport_runways)矢量空间数据及相关属性数据:机场名称(Name)、机场国家名称(CNTRY_NAME)、机场国家缩写(CNTRY_CODE)、纬度(LATITUDE)、经度(LONGITUDE)。 数据来自1:100万ADC_WorldMap全球数据集,数据经过拓扑,入库是全面、最新和无缝的地理数字数据。 世界地图坐标系统是经纬度,WGS84基准面,南极地区数据集为南极专用投影参数(South_Pole_Stereographic)。
ADC WorldMap
南极1:100万居民点数据集包括南极范围内所有居民点(Antarctica_Resident)等矢量空间数据及相关属性数据:城市名称(ENG_NAME)、城市人口(CNTEY_NAME)、(CNTRY_CODE)等属性。 数据来自1:100万ADC_WorldMap全球数据集,数据经过拓扑,入库等数据质量检查,是全面、最新和无缝的地理数字数据。 世界地图坐标系统是经纬度,WGS84基准面,南极地区数据集为南极专用投影参数(South_Pole_Stereographic)
ADC WorldMap
数字高程模型(Digital Elevation Model),简称DEM,是通过有限的地形高程数据实现对地面地形的数字化模拟(即地形表面形态的数字化表达),它是用一组有序数值阵列形式表示地面高程的一种实体地面模型。 北极地区指北极圈66°34′以内的区域和格陵兰岛在北极圈以外的部分。高程数据包括北极数字dem及山影数据(hillshade),tif格式。范围为66°N~90°N,空间分辨率为0.008°×0.008°。 数据下载自NASA全球高程数据 DEM描述的是地面高程信息,它在测绘、水文、气象、地貌、地质、土壤、工程建设、 通讯、军事等国民经济和国防建设以及人文和自然科学领域有着广泛的应用。
National Aeronautics and Space Administration
北极1:100万水系数据集包括北极范围内不同等级的线型河流(Arctic_River)、多边形水系(Arctic_Water_poly)矢量空间数据及相关属性数据:名称(Name)、类型(Type)。 数据来自1:100万ADC_WorldMap全球数据集,数据经过拓扑,入库等数据质量检查,是全面、最新和无缝的地理数字数据。 世界地图坐标系统是经纬度,WGS84基准面,北极地区数据集为北极专用投影参数(North_Pole_Stereographic)。
ADC WorldMap
本数据集是2010年青藏高原地区的土地覆被数据,数据为栅格TIFF格式,空间分辨率为300米,包含耕地、林地、草地、水体、城市用地等22个大类,可用于青藏高原城镇化与生态环境交互胁迫的地理本底研究。该数据来自欧空局CCI-LC项目生产的土地覆被数据产品。该数据集采用了WGS84的地理坐标系统,有22个大类。数据的生产融合多种卫星数据资料,包括MERIS FR/RR,AVHRR,SPOT-VGT,PROBA-V等。经验证,该数据集的总体精度在70%以上,当然精度会在不同的地区和覆被类型上存在差异。
杜云艳
北极1:100万机场分布数据集包括北极范围内机场(Arctic_Airport)及机场跑道(Arctic_Airport_runways)矢量空间数据及相关属性数据:机场名称(Name)、机场国家名称(CNTRY_NAME)、机场国家缩写(CNTRY_CODE)、纬度(LATITUDE)、经度(LONGITUDE)。 数据来自1:100万ADC_WorldMap全球数据集,数据经过拓扑,入库等数据质量检查,是全面、最新和无缝的地理数字数据。 世界地图坐标系统是经纬度,WGS84基准面,北极地区数据集为北极专用投影参数(North_Pole_Stereographic)。
ADC WorldMap
北极1:100万居民点数据集包括北极范围内所有居民点(Arctic_Resident)、首都居民点(Arctic_Capitals)、城市人口大于75k的居民点(Cities_up_to_75K)等矢量空间数据及相关属性数据:城市名称(ENG_NAME)、城市人口(CITY_POP)等属性。 数据来自1:100万ADC_WorldMap全球数据集,数据经过拓扑,入库等数据质量检查,是全面、最新和无缝的地理数字数据。 世界地图坐标系统是经纬度,WGS84基准面,北极地区数据集为北极专用投影参数(North_Pole_Stereographic)。
ADC WorldMap
北极1:100万山脉数据集包括北极范围内山脉(Arctic_Mountains)矢量空间分布数据及相关属性数据:名称(Name)、山脉所在国家名称(CNTRY_NAME)、山脉所在国家简称(CNTRY_CODE)、纬度(LATITUDE)、经度(LONGITUDE) 数据来自1:100万ADC_WorldMap全球数据集,数据经过拓扑,入库等数据质量检查,是全面、最新和无缝的地理数字数据。 世界地图坐标系统是经纬度,WGS84基准面,北极地区数据集为北极专用投影参数(North_Pole_Stereographic)。
ADC WorldMap
该数据集是中国科学院西北高原生物研究所调查的三江源国家公园植物采集布位点信息。该数据集时间范围是2008年至2017年,调查范围是三江源国家公园,调查内容包括采集日期、编号、科、属、种、调查日期、采集地点、采集人、经度、纬度、海拔、生境、鉴定人等信息。对国家公园的三个园区分别进行了调查,在长江源园区调查了24个科56个属的88个种的植被,总共116条记录;在黄河源园区调查了26个科64个属110个种的植被,总共159条记录;在澜沧江源园区调查了12个科22个属30个种的植被,总共33条记录。
高庆波
净初级生产力(NPP)数据基于CASA模型生产,数据内容为三江源地区2010-2015年250米分辨率逐月NPP数据集。净初级生产力定义:绿色植物单位面积、单位时间内所累积的有机物数量。 单位:0.01gC/m²/月。Monthly和Yearly NPP分别表示逐月和逐年NPP。 投影信息: Albers 等积圆锥投影 中央经线:105度 第一割线:25度 第一割线:47度 坐标西偏:4000000 meter
朱伟伟
该数据集包含青藏高原1970s,1990,2000,2010年份大于1平方公里湖泊矢量数据。 湖泊水体边界根据Landsat MSS, TM, ETM+等影像目视解译而来。 数据类型为矢量数据,属性字段包括Area (km²)。 投影坐标系为Albers Conical Equal Area。 主要用于青藏高原湖泊、水文与气象变化研究。
张国庆
基于MODIS 2000年至2018年生长季平均的NDVI(空间分辨率250m),利用Mann-Kendall趋势检测方法,计算了NDVI的变化趋势。对三江源国家公园的三个园区都进行了计算(CJYYQ:长江源园区;HHYYQ:黄河源园区;LCJYYQ:澜沧江源园区)。CJYYQ_NDVI_trend_2000_2018_ok.tif:长江源园区NDVI变化趋势。CJYYQ_NDVI_trend_2000_2018_ok_significant.tif:长江源园区NDVI变化趋势,剔除了不显著(p>0.05)的区域。CJYYQ_gs_avg_NDVI_2000.tif:长江源园区2000年生长季平均NDVI。单位为NDVI变化每年。
王旭峰
本数据集为青藏高原黄河源区2015年逐像素年内最大植被覆盖度空间分布图,该区域的面积约为4.4万平方公里。此数据是基于2015年MODIS(空间分辨率250米) 和Landsat-8 OLI(空间分辨率30米)植被生长季(5月初-9月末)的时间序列影像,并利用最大值合成方法、像元二分模型和时间插值等方式获得。植被覆盖度空间分布图的空间分辨率为30米,采用WGS 1984 UTM 投影,数据格式为grid格式。
王广军
采用WRF模式制备的青藏高原近地表大气驱动和地表状态数据集,时间范围:2000-2010,空间范围:25-40 ºN,75-105 ºE,时间分辨率:逐时,空间分辨率:10 km,格点数为150*300。 总计有33个变量,其中包含的近地表大气变量11个: 地面上2m高度的温度、 地面上2m高度的比湿、地面气压、地面上10m风场的纬向分量、地面上10m风场的经向分量、固体降水比例、累积的积云对流降水、累积的格点降水、地表处的向下短波辐射通量、地表处的向下长波辐射通量、累计的潜在蒸发。 包含的地表状态变量有19个:各层土壤温度、各层土壤湿度、 各层土壤液态水含量、雪相态改变的热通量、土壤底部温度、地表径流、地下径流、植被比例、地面热通量、雪水当量、实际雪厚、雪密度、冠层中的水、地表温度、反照率、背景反照率、更低边界处的土壤温度、地表面处向上的热量通量(感热通量)、地表面处向上的水量通量(感热通量)。 其他变量3个:经度、纬度和行星边界层高度。
潘小多
中亚地区荒漠化(土地沙化、盐渍化和植被退化)专题数据主要包括:中亚地区沙化土地分布图、中亚地区盐渍化土地分布图和中亚地区土地植被退化分布图,空间分辨率为1km,时间分辨率为年。中亚地区盐渍化土地分布图将盐渍化土地分为了轻度、中度、重度和极重度盐渍化土地四类。中亚地区土地植被退化分布图将植被退化状况分为了显著改善、轻微改善、稳定或无植被、轻微退化和显著退化五类。数据由中国科学院新疆生态与地理研究所遥感与GIS重点实验室生产,生产费用由“中国科学院战略性先导科技专项XDA20030101资助”。
许文强
中亚-西亚地区典型流域荒漠化关键要素数据集由4部分组成,分别是阿姆河流域农用地分布及变化、阿姆河流域草地分布及变化、阿姆河流域灌丛分布及变化和阿姆河流域森林分布及变化,数据空间分辨率为30m。由中国科学院新疆生态与地理研究所遥感与GIS重点实验室生产,数据生产费用由“中国科学院战略性先导科技专项XDA20030101资助”。阿姆河流域荒漠化关键要素数据集由1990年、2000年和、2010年三期数据组成,是基于TM/ETM遥感影像解译获得。
许文强
数据来源于美国地质勘探局(USGS)开发的30秒全球高程数据集,于1996年完成。从NCAR和UCAR联合的数据下载中心(https://rda.ucar.edu/datasets/ds758.0/)下载了泛第三极区域的数据,并通过数据中心重新分发。GTOPO30在分发时将全球分为33个区块,采样间隔为30弧秒, 即0.008333333333333度,坐标参考为WGS84,其值为垂直方向高出海平面的距离,即海拔,单位为m,海拔范围-407到8752,这里不包含海洋深度信息,负值为大陆架的海拔;海洋处标记为-9999,海岸线以上大陆海拔至少为1;小于1平方千米的岛不考虑。详细说明信息请见说明文档。 为了便于用户使用方便,在分块数据的基础上,将-10S-90N,20W-180E内10个区块进行拼接,没有经过任何重采样处理。本数据文件为DEM_ptpe_Gtopo30.nc
何永利
土壤是岩石经过风化作用形成的不同大小的矿物颗粒。土壤不仅仅为作物提供养分和水分,同时也对各种养分有转化作用。此外,土壤还有自净功能,可以改良有机物含量、土壤温湿度、pH值、阴阳离子。而土壤污染导致几个方面的环境问题:工业污水, .酸雨, 尾气排放, 堆积物, 农业污染。土地受到污染后,含重金属浓度较高的污染表土容易在风力和水力的作用下分别进入到大气和水体中,导致大气污染、地表水污染、地下水污染和生态系统退化等其他次生生态环境问题。该数据集来源于联合国粮农组织(FAO)和维也纳国际应用系统研究所(IIASA)所构建的世界土壤数据库(Harmonized World Soil Database version 1.1 )(HWSD),该数据为建模者提供模型输入参数,同时为生态农业分区,粮食安全和气候变化等研究提供依据。
联合国粮农组织(FAO)
数据包含青藏高原地区的土壤有机质数据,空间分辨率为1km*1km,时间覆盖范围为1979-1985年。数据来源是基于第二次土壤普查数据生成的土壤碳含量。土壤有机质主要来源于植物、动物及微生物残体,其中高等植物为主要来源。原始土壤中最早出现在母质中的有机体是微生物。随着生物的进化和成土过程的发展,动物、植物残体及其分泌物就成为土壤有机质的基本来源。数据对于分析青藏高原的生态环境以及衡量区域土壤特征具有重要意义。
方华军
中亚地区2017年输沙势数据集,为tif格式。其空间范围涵盖里海在内的中亚五国地区,包括乌兹别克斯坦、哈萨克斯坦、土库曼斯坦、塔吉克斯坦和吉尔吉斯坦。此输沙势为绝对输势,即各个方向的输沙通量的综合,不考虑输沙势的方向。该数据由GLDAS全球三小时同化数据提取计算获得。时间分辨率为月,空间分辨率为0.25°,时间范围为2017年。该数据可以作为沙尘传输模型的重要参数输入,也可用于评估中亚五国沙通量的总体分布情况。该数据集可作为风沙灾害评估的重要参考数据。
高鑫
采用实地调查的方法,收集了青藏高原藏北那曲、东部若尔盖高原、风火山2015-2017年植被地上地下生物量及土壤碳氮数据,并对数据进行整理和初步分析。数据集主要包括不同增温梯度、不同海拔梯度(亚高山草甸、高山草甸、高山灌丛草甸)、不同水分梯度(沼泽湿地、退化沼泽、沼泽草甸、湿草甸、干草甸、退化草甸)和不同沙化程度(轻度沙化、中度沙化、重度沙化、完全沙化)下的高寒地区植被地上和地下生物量以及土壤碳含量。综合分析了以上不同梯度下植被生物量和土壤碳氮含量的差异和变化趋势。该数据集为了解及合理利用草地资源提供理论依据,也为探讨全球气候变化背景下高寒草地生产力预测提供有力支持。
张宪洲, 张扬建, 苏培玺, 杨燕
径流是大气降水形成的,并通过流域内不同路径进入河流、湖泊或海洋的水流。习惯上也表示一定时段内通过河流某一断面的水量,即径流量。径流数据在水文水资源研究中占据着重要的地位,影响中亚当地社会经济的发展。本数据为中亚五国(哈萨克斯坦、吉尔吉斯斯坦、塔吉克斯坦、乌兹别克斯坦和土库曼斯坦)流量,来源于中亚各国水文气象局。时间尺度为2015年的年均数据。本数据为项目提供了基础数据,便于分析中亚生态水文水资源的情况,为项目数据分析提供了数据支持。
刘铁
中亚地区植被覆盖度数据,数据格式为“.tif”的栅格数据集。范围包含了里海在内的中亚五国地区。该数据由MODIS-NDVI数据集,根据干旱区植被盖度与NDVI之间的经验关系计算得到。该数据空间分辨率为500m,时间分辨率为16天,时间范围为2017年1月1日至2017年12月18日,其坐标系统为大地坐标系统。该数据集可为中亚地区沙漠油气田与绿洲城镇风沙灾害评估提供数据基础。该数据由中国科学院新疆生态与地理研究所提供。
高鑫
1:10万黑河流域植被图,区域范围以黄委会黑河边界为准,面积约为14.29×104km2,数据格式为GIS矢量格式,本版本为3.0版。该数据以地面观察数据为主、综合各类遥感数据、1:100万植被图、气候、地形、地貌、土壤数据制图,并进行交叉验证编制而成。采用《中华人民共和国植被图 (1:1,000,000), 2007》的分类标准、图例单位和系统,包括植被型组、植被型、群系、亚群系四个单位。新版主要是对新群系代码进行了统一(共74个代码,区分群系和亚群系)。将2.0版本的9个植被型组,22个植被型,74个群系(亚群系)改为9个植被型组,22个植被型,67个群系(7个亚群系)。 数据包含2.0版本和3.0版本。
郑元润, 周继华
中亚五国1980-2015年农业水资源供需和开发利用数据集,来源全球陆面数据同化系统,分别包括基于Noah、Mosaic和VIC模型输出的降水、蒸发和径流数据。该数据集时间和空间分辨率高,具有较好的数据精度,在全球尺度和区域尺度研究中应用广泛。Noah、Mosaic和VIC模型的降水、蒸发和径流模拟结果在空间分布上的表现较为一致。可用于中亚地区水资源时空变化特征、农业水资源供需关系分析和水资源开发潜力评估等。
张永勇
青藏高原生态资产评估遥感反演基础数据集包括了青藏高原自2000年起年度的植被覆盖度(FVC),净初级生产力(NPP)和叶面积指数(LAI)等基于遥感反演的生态参数,以供区域尺度生态资产评估研究使用。其中植被覆盖度数据以MODIS NDVI数据为主体,基于像元二分模型,利用多尺度遥感影像,结合植被群落类型、分布特征等高精度遥感参数,发展植被覆盖度模型,用混合像元分解法构建。精度验证估测值与实测值的RMSE为0.21,在样本值0-0.5之间均存在一定的高估情况。
刘文俊
中亚沙漠油气田分布城镇分布数据,数据格式为“.shp”格式矢量数据。包括了中亚五国油气田及主要城镇居民点的分布。该数据由MODIS-MCD12Q产品提取裁切而成,该产品空间分辨率为500 m,时间分辨率为1年,其分类标准采用的是IGBP全球植被分类方案,该方案共分为17种土地覆被类型,其中城镇数据利用该分类方案中的建筑与城镇用地。该数据可为中亚地区沙漠油气田与绿城城镇风沙灾害评估和防治提供数据支撑。
高鑫
该数据集是NOAA的 Advanced Very High Resolution Radiometer (AVHRR)传感器获取的长时间序列的NDVI数据。该数据集时间范围是1982年至2015年。为了去除NDVI数据中的噪声,进行了最大化合成、多传感器对比纠正。每半个月合成一幅NDVI影像。该数据集在植被长期变化趋势分析中被广泛应用。该数据集是从全球数据集中将三江源部分裁切出来,以便单独开展三江源地区的研究分析。 本数据集数据格式为geotiff,空间分辨率为8km,时间分辨率为2周,时间范围为1982年至2015年。数据转系系数为10000, NDVI = ND/10000。
NOAA
本数据来源于全国地理信息资源目录服务系统系统,由国家基础地理信息中心于2017年11月份开始免费向公众提供。我们将三江源作为一个整体进行了拼接和裁切,以便于三江源地区研究中的使用。数据现势性为2015年。 本数据集为三江源地区1:25万水系数据,包括水系面(HYDA)、水系线(HYDL)和水系点(HYDP)三个图层。水系面(HYDA)包括湖泊、水库、双线河流和沟渠等;水系线(HYDL)包括单线河流、沟渠、河流结构线等;水系点(HYDP)包括泉、井等。 HYDA属性项名称及定义: 属性项 描述 填写实例 GB 国标分类码 210101 HYDC 水系名称代码 KJ2103 NAME 名称 黑河 WQL 水质 淡 PERIOD 时令月份 7-9 TYPE 类型 通行 HYDL属性项名称及定义: 属性项 描述 填写实例 GB 国标分类码 210101 HYDC 水系名称代码 KJ2103 NAME 名称 黑河 PERIOD 时令月份 7-9 HYDP属性项名称及定义: 属性项 描述 填写实例 GB 国标分类码 210101 NAME 名称 不冻泉 TYPE 类型 淡 ANGLE 角度 75 水系数据GB码及其含义: 属性项 代码 描述 GB 210101 地面河流 210200 时令河 210300 干涸河 230101 湖泊 230102 池塘 230200 时令湖 230300 干涸湖 240101 建成水库 240102 建成中水库
全国地理信息资源目录服务系统
该数据集是MODIS的植被指数数据(MOD13Q1),将三江源区域进行了提取,以便单独开展三江源地区的研究分析。MOD13Q1是16天合成的植被指数,包含归一化植被指数(NDVI)和增强型植被指数(EVI)。三江源的空间范围覆盖两景MODIS文件(h25v05和h26v05)。数据存储格式为hdf,每个文件中包含12个波段:归一化植被指数(NDVI)、增强型植被指数(EVI)、数据质量(VI Quality)、红波段反射率(red reflectance)、近红外波段反射率(NIR reflectance)、蓝波段反射率(blue reflectance)、中红外波段反射率(MIR reflectance)、观测天顶角(view zenith angle)、太阳天顶角(sun zenith angle)、相对方位角(relative azimuth angle)、合成的时间(composite day of the year)和象元可靠性(pixel reliability). 本数据集数据格式为hdf,空间分辨率250m,时间分辨率是16天,时间范围:2000年2月至2018年10月。
Kamel Didan*, Armando Barreto Munoz, Ramon Solano, Alfredo Huete
本数据来源于全国地理信息资源目录服务系统系统,由国家基础地理信息中心于2017年11月份开始免费向公众提供。我们将三江源作为一个整体进行了拼接和裁切,以便于三江源地区研究中的使用。数据现势性为2017年。 本数据集为三江源地区1:100万水系数据,包括水系面(HYDA)、水系线(HYDL)和水系点(HYDP)三个图层。水系面(HYDA)包括湖泊、水库、双线河流等;水系线(HYDL)包括单线河流、沟渠、河流结构线等;水系点(HYDP)包括泉、井等。 HYDA属性项名称及定义: 属性项 描述 填写实例 GB 国标分类码 210101 HYDC 水系名称代码 KJ2103 NAME 名称 黑河 WQL 水质 淡 PERIOD 时令月份 7-9 TYPE 类型 通行 HYDL属性项名称及定义: 属性项 描述 填写实例 GB 国标分类码 210101 HYDC 水系名称代码 KJ2103 NAME 名称 黑河 PERIOD 时令月份 7-9 HYDP属性项名称及定义: 属性项 描述 填写实例 GB 国标分类码 210101 NAME 名称 不冻泉 TYPE 类型 淡 ANGLE 角度 75 水系数据GB码及其含义: 属性项 代码 描述 GB 210101 地面河流 210200 时令河 210300 干涸河 230101 湖泊 230102 池塘 230200 时令湖 230300 干涸湖 240101 建成水库 240102 建成中水库
全国地理信息资源目录服务系统
该数据集是SPOT卫星上的VEGETATION传感器获取的长时间序列的NDVI数据。该数据集时间范围是1998年5月至2013年。为了去除NDVI数据中的噪声,进行了最大化合成。每10天合成一幅NDVI影像。该数据集是从全球数据集中将三江源部分裁切出来,以便单独开展三江源地区的研究分析。 本数据集数据格式为geotiff,空间分辨率1km,时间分辨率是10天,时间范围:1998年5月至2013年12月。
Image Processing Centre for SPOT-VGT
本数据来源于全国地理信息资源目录服务系统,由国家基础地理信息中心于2017年11月份开始免费向公众提供。我们将三江源作为一个整体进行了拼接和裁切,以便于三江源地区研究中的使用。数据现势性为2015年。 本数据集为三江源地区1:25万居民点数据集,包括居民地面(RESA)和居民地点(RESP)两个图层, 居民地面(RESA)主要指面状居民地轮廓;居民地点(RESP),包括普通房屋、棚房、窑洞、蒙古包、放牧点等。 居民地面(RESA)属性项名称及定义: 属性项 描述 填写实例 GB 国标分类码 310200 居民地点(RESP)属性项名称及定义: 属性项 描述 填写实例 GB 国标分类码 310200 ANGLE 角度 67
全国地理信息资源目录服务系统
本数据为小满玉米地(2012-06-25日至2012-08-24日)的LAINet数据集。 测量仪器:北京师范大学自制无线传感器网络叶面积指数观测仪 测量方式:LAINet观测系统由三类传感器节点组成,分别是(1)冠层下节点,传感器近水平向上放置,用来测量冠层透过辐射,(2)冠层上节点,传感器近似水平向上放置,用来测量太阳入射总辐射,(3)汇聚节点,用来接收并转发由(1)和(2)两类节点测量到的数据。 数据处理:从传感器接收到原始数据是按照汇聚节点进行接收的,经过预处理之后形成以天为时间单位的原始数据集。仪器对冠层透过率的观测是通过计算一天之内不同太阳高度角下冠层下透过辐射与冠层上的入射总辐射的比值而得到的。叶面积指数是基于多角度透过率数据进行反演计算得到。 LAINet数据集包括计算的原始LAI数据、经过5天平均之后的LAI数据以及测量节点的经纬度。所有数据以Excel保存。其中5天平均处理后的数据以汇聚节点编号为表单名称,每个表单(sheet)保存是一个汇聚节点下所有子节点的测量数据。原始数据记录了每个节点在所有观测日期内能够计算得到的LAI数值。以上两类数据的每个表单中,各列的含义如下:测量日期,DOY,节点1,节点2,...,节点N。
马明国
该数据集是SeaWiFS获取的长时间序列的NDVI数据。该数据集时间范围是1997年9月至2007年。为了去除NDVI数据中的噪声,进行了最大化合成。每15天合成一幅NDVI影像。该数据集是从全球数据集中将三江源部分裁切出来,以便单独开展三江源地区的研究分析。 本数据集数据格式为geotiff,空间分辨率4km,时间分辨率是15天,时间范围:1997年第256天至2007年第365天。
Charles R. Mcclain
本数据来源于全国地理信息资源目录服务系统,由国家基础地理信息中心于2017年11月份开始免费向公众提供。为了更加方便的使用数据,将三江源作为一个整体进行了拼接和裁切,以便于三江源地区研究中的使用。数据现势性为2017年。 本数据集为三江源地区1:100万居民点数据,包括居民地面(RESA)和居民地点(RESP)两个图层, RESP 居民地(点)图层,包括普通房屋、放牧点等。 居民地面(RESA)属性项名称及定义: 属性项 描述 填写实例 GB 国标分类码 310200 居民地点(RESP)属性项名称及定义: 属性项 描述 填写实例 GB 国标分类码 310200 ANGLE 角度 67
全国地理信息资源目录服务系统
2018年8月19日在长江源园区曲麻莱县的高寒草甸样方采用DJI无人机进行航拍,按照设定的飞行路线拍摄照片,相邻照片重叠度不低于70%,利用拍摄的照片生成正射影像和DSM,正射影像包含红绿蓝三个波段,正射影像地面分辨率为2.5cm,拍摄面积为860m×770m,DSM的分辨率为4.5cm。
王旭峰, 魏彦强
2018年8月19日在长江源园区曲麻莱县的湿地样方采用DJI无人机进行航拍,按照设定的飞行路线拍摄照片,相邻照片重叠度不低于70%,利用拍摄的照片生成正射影像和DSM,正射影像包含红绿蓝三个波段,地面分辨率为2cm,拍摄面积为850m×1000m,DSM的分辨率为4.5cm。
王旭峰, 魏彦强
2018年8月22日在位于澜沧江源区的固定样方采用DJI无人机搭载的照相机,按照设定的飞行路线拍摄照片,相邻照片重叠度不低于70%,利用拍摄的照片生成正射影像和DSM,正射影像包含红绿蓝三个波段,地面分辨率为2.5cm,拍摄面积为1000m×1000m,DSM的分辨率为4.5cm。由于通信故障,导致中间4条航带没有拍摄上照片,所以中间有一个条带的影像缺失。
王旭峰, 王旭峰, 魏彦强, 王旭峰
本数据来源于“中国1:10万土地利用数据”。中国1:10万土地利用数据是由中国科学院“八五”重大应用项目《全国资源环境遥感宏观调查与动态研究》组织了中国科学院所属19个研究所的遥感科技队伍,以卫星遥感为手段,在三年内基于Landsat MSS,TM和ETM遥感数据构建的。本数据采用一个分层的土地覆盖分类系统,将全国分为6个一级类(耕地、林地、草地、水域、城乡、工矿、居民用地和未利用土地),31个二级类。这是目前我国精度最高的土地利用数据产品,已经在国家土地资源调查、水文、生态研究中发挥着重要作用。
刘纪远, 庄大方, 王建华, 周万村, 吴世新
无论从全球尺度亦或是局地尺度而言,土壤数据及其重要,而由于缺乏可靠的土壤数据,土地退化评估、环境影响研究和、可持续的土地管理干预措施收到了极大的瓶颈阻碍。受到土壤信息数据在全世界的迫切需要,特别是在气候变化公约的背景下,国际应用系统分析研究所(IIASA)及联合国粮农组织(FAO)和京都协议对土壤碳测量和联合国粮农组织/国际全球农业生态评价研究(GAEZ v3.0)共同倡导下建立了新一代世界土壤数据库(Harmonized World Soil Database version 1.2 )(HWSD V1.2).其中,中国地区数据源为1995年全国第二次土地调查由南京土壤所所提供的1:1,000,000土壤数据。数据格式:grid栅格格式,投影为WGS84。采用的土壤分类系统主要为FAO-90。 核心土壤制度单元唯一验证标识符: MU_GLOBAL-HWSD数据库土壤制图单元标示符,连接了GIS图层。 MU_SOURCE1 和 MU_SOURCE2- 源数据库制图单元标识符 SEQ-土壤制图单元组成中的土壤单元序列; 土壤分类系统利用FAO-7分类系统或 FAO-90分类系统(SU_SYM74 resp. SU_SYM90)或FAO-85(SU_SYM85). 土壤属性表主要字段包括: ID(数据库ID) MU_GLOBAL(土壤单元标识符)(全球) SU_SYMBOL 土壤制图单元 SU_SYM74(FAO74分类); SU_SYM85(FAO85分类); SU_SYM90(FAO90土壤分类系统中土壤名称); SU_CODE 土壤制图单元代码 SU_CODE74 土壤单元名称 SU_CODE85 土壤单元名称 SU_CODE90 土壤单元名称 DRAINAGE(19.5); REF_DEPTH(土壤参考深度); AWC_CLASS(19.5); AWC_CLASS(土壤有效水含量); PHASE1: Real (土壤相位); PHASE2: String (土壤相位); ROOTS: String (到土壤底部存在障碍的深度分类); SWR: String (土壤含水量特征); ADD_PROP: Real (土壤单元中与农业用途有关的特定土壤类型); T_TEXTURE(顶层土壤质地); T_GRAVEL: Real (顶层碎石体积百分比);(单位:%vol.) T_SAND: Real (顶层沙含量); (单位:% wt.) T_SILT: Real (表层粉沙粒含量); (单位:% wt.) T_CLAY: Real (顶层粘土含量); (单位:% wt.) T_USDA_TEX: Real (顶层USDA土壤质地分类); (单位:name) T_REF_BULK: Real (顶层土壤容重); (单位:kg/dm3.) T_OC: Real (顶层有机碳含量); (单位:% weight) T_PH_H2O: Real (顶层酸碱度) (单位:-log(H+)) T_CEC_CLAY: Real (顶层粘性层土壤的阳离子交换能力); (单位:cmol/kg) T_CEC_SOIL: Real (顶层土壤的阳离子交换能力) (单位:cmol/kg) T_BS: Real (顶层基本饱和度); (单位:%) T_TEB: Real (顶层交换性盐基);(单位:cmol/kg) T_CACO3: Real (顶层碳酸盐或石灰含量) (单位:% weight) T_CASO4: Real (顶层硫酸盐含量);(单位:% weight) T_ESP: Real (顶层可交换钠盐);(单位:%) T_ECE: Real (顶层电导率)。 (单位:dS/m) S_GRAVEL: Real (底层碎石体积百分比);(单位:%vol.) S_SAND: Real (底层沙含量); (单位:% wt.) S_SILT: Real (底层淤泥含量); (单位:% wt.) S_CLAY: Real (底层粘土含量); (单位:% wt.) S_USDA_TEX: Real (底层USDA土壤质地分类); (单位:name) S_REF_BULK: Real (底层土壤容重); (单位:kg/dm3.) S_OC: Real (底层有机碳含量); (单位:% weight) S_PH_H2O: Real (底层酸碱度) (单位:-log(H+)) S_CEC_CLAY: Real (底层粘性层土壤的阳离子交换能力); (单位:cmol/kg) S_CEC_SOIL: Real (底层土壤的阳离子交换能力) (单位:cmol/kg) S_BS: Real (底层基本饱和度); (单位:%) S_TEB: Real (底层交换性盐基);(单位:cmol/kg) S_CACO3: Real (底层碳酸盐或石灰含量) (单位:% weight) S_CASO4: Real (底层硫酸盐含量);(单位:% weight) S_ESP: Real (底层可交换钠盐);(单位:%) S_ECE: Real (底层电导率)。 (单位:dS/m) 本数据库分两层,其中以顶层(T)土壤厚度为(0-30cm),底层(S)土壤厚度为(30-100cm)。 其他属性值请参考说明HWSD1.2_documentation文档.pdf,The Harmonized World Soil Database (HWSD V1.2) Viewer-中文说明及HWSD.mdb。
孟现勇, 王浩
青藏高原湖泊面积长时间序列数据集包含1970s至2013年364个面积大于10平方公里湖泊的面积序列数据。根据Landsat影像得来,以Landsat 10月份数据为主,每隔3年取一个数据,减少季节变化的同时,可利用数据达到最大。 数据使用NDWI水体指数提取,每个湖泊经过人工目视检查与编辑。 数据应用于青藏高原湖泊变化、湖泊水量平衡、气候变化的研究。 数据类型:矢量。 投影方式:WGS84。
张国庆
该数据集记录了阿里荒漠环境综合观测研究站,2009-2017年气象数据集,数据时间分辨率为天。包含如下基本气象参数:气温(距地面1.5米,半小时观测一次,单位:摄氏度)、相对湿度(距地面1.5米,半小时一次,单位:%)、风速(距地面1.5米,半小时一次,单位:米/秒)、风向(距地面1.5米,半小时一次,单位:度)、气压(距地面1.5米,半小时一次,单位:hPa)、降水量(24时一次,单位:毫米)、水汽压(单位:Kpa)、蒸发(单位:毫米)、向下短波辐射(单位:W/m²)、向上短波辐射(单位:W/m²) 、向下长波辐射(单位:W/m²) 、向上长波辐射(单位:W/m²) 、净辐射(单位:W/m²)、地表反照率(单位:%)。 数据采集地点:中国科学院青藏高原研究所阿里荒漠环境综合观测研究站观测场,经度:79°42'5";纬度:33°23'30";海拔:4264米。 数据从阿里站自动气象站直接下载,其中降水数据是自动雨雪量计和人工观测校正得到每天的降水量,其它均为半小时的观测值经平均得到逐日均值。 观测仪器型号:温度和湿度:HMP45C空气温湿度探头;降水:T200-B雨雪量仪传感器;风速和风向: Vaisala 05013风速风向传感器;净辐射:Kipp Zonen NR01净辐射传感器;气压:Vaisala PTB210大气压传感器。采集器型号:CR 1000,采集时间:30分钟。 本数据表是由专人根据观测记录进行加工和质量控制。严格按照仪器操作规范进行观测和数据采集,在加工生成数据表时,剔除了一些明显误差数据。
赵华标
该数据集包含了2017年1月1日至2017年12月31日的宇宙射线仪器(crs)观测数据。站点位于甘肃省张掖市大满灌区农田内,下垫面是玉米地。观测点的经纬度是100.3722E, 38.8555N,海拔1556m,仪器探头底部距地面0.5m,采样频率是1小时。 宇宙射线仪器的原始观测项目包括:电压Batt(V)、温度T(℃)、相对湿度RH(%)、气压P(hPa)、快中子数N1C(个/小时)、热中子数N2C(个/小时)、快中子采样时间N1ET(s)及热中子采样时间N2ET(s)。发布的数据为经过处理计算后的数据,数据表头包括:Date Time(日期 时间)、P(气压 hPa)、N1C(快中子数 个/小时)、N1C_cor(气压订正的快中子数 个/小时)和VWC(土壤体积含水量 %),其处理的主要步骤包括: 1) 数据筛选 数据筛选共四条标准:(1)剔除电压小于和等于11.8伏特的数据;(2)剔除空气相对湿度大于和等于80%的数据;(3)剔除采样时间间隔不在60±1分钟内的数据;(4) 剔除快中子数较前后一小时变化大于200的数据。此外缺失数据用-6999补充。 2) 气压订正 根据仪器说明手册中提到的快中子气压订正公式,对原始数据进行气压订正,得到订正后的快中子数N1C_cor。 3) 仪器率定 在计算土壤水分的过程中需要对计算公式中的N0进行率定。N0为土壤干燥条件下的快中子数,通常使用测量源区内的土样得到实测土壤水分(或者通过比较密集的土壤水分无线传感器获取)θm(Zreda et al. 2012)和对应时间段内的快中子校正数据N,再通过公式反求得到N0。 在此,根据仪器源区内的Soilnet土壤水分数据对仪器进行率定,建立土壤体积含水量θv和快中子之间的关系。分别选取干湿状况差异比较明显的2012年6月26日-27日和7月16日-17日四天的数据,其中6月26日-27日率定数据显示土壤水分较小,因此选取4厘米、10厘米和20厘米的三个值平均值作为率定数据,其变化范围为22%-30%,而7月16日-17日率定数据显示土壤水分较大,因此选取4厘米、10厘米的两个值平均值作为率定数据,其变化范围为28%-39%,最后平均N0为3597。 4) 土壤水分计算 根据公式,计算得到每小时的土壤含水量数据。 水文气象网或站点信息请参考Liu et al. (2018),观测数据处理请参考Zhu et al. (2015)
刘绍民, 朱忠礼, 徐自为, 李新, 车涛, 谭俊磊, 任志国
河流湖泊等资源是研究地球生态环境的重要内容,影响全球生态系统、热量、物质交换和平衡,是研究全球环境机理变化的重要基础。当前,全球缺乏大尺度、高精度、大范围的湖泊矢量数据,阻碍了有关河流、湖泊的水文研究。研究以陈军等全球河流湖泊数据集作为源数据,结合2010年前后2-3年的国产高分影像GF数据,产生一套全球河流、湖泊数据集。这套数据集弥补了部分区域精度低的缺陷,是具有可编辑性的较高精度的湖、河矢量数据集。
邱玉宝
采用供需平衡的分析方法,分别计算流域总体及各县区水资源供给量及需求量的基础上,评估流域水资源系统脆弱性。采用IPAT等式设置未来水资源需求情景,即通过设定未来的人口增长率、经济增长速度、单位GDP耗水量等变量来建立需水情景。以2005年为基准年,预测未来2010-2050年的各县市水资源需求情景。人口规模、经济规模采用配套预测数据。应用瑞典水文气象研究所HBV概念性水文模型的基本结构,设计了在气候变化下流域变化趋势的模型,以冰川融化情景为模型的输入,构建气候变化下出山径流情景。依据流域水资源配置的国家地方规定设置配水方案,综合计算水资源供给量。综合供需情况,以缺水率为指标评价水资源系统脆弱性。通过计算流域主要县市的(小麦生产)土地压力指数,分析了流域气候变化、冰川融化及人口增长情景下土地资源的供需平衡,评价了农业系统脆弱性。分别运用迈阿密公式及HANPP模型计算了未来情景下,流域各主要县市净初级生物生产量及初级生物量的人类占用,以供需平衡角度评估生态系统脆弱性。
杨林生, 钟方雷
通过燃烧地表植被和土壤有机物质,野火会对冻土环境产生强烈影响。受火灾干扰的植被可能需要许多年才能恢复到火灾前期或成熟水平。在本数据集中,通过量化C 波段和 L 波段 SAR 后向散射 15 年(2002—2017)的变化,用来研究阿拉斯加北坡Anaktuvuk 河流域冻土苔原环境火灾对植被再生长的影响。火灾过后,C 和 L 波段 在严重火灾地区后向散射系数比未烧的地区分别增加了 5.5 和 4.4 dB。火灾发生后 5 年,C 波段背向散射差异在火灾区和未燃烧区之间减小,表明过火地植被水平已恢复到未燃烧区域水平。这种持续恢复时间比基于光学的 NDVI 观测的 3 年恢复要长。此外,在植被恢复 10 年后, L 波段在火灾严重区后向散射比未燃烧区依然约高 2 dB。 这种持续的差异可能是由表面粗糙度增加造成的。我们的分析表明,长期存档的星载 SAR 后向散射可以量化北极苔原环境火灾后植被恢复情况,也可以作为光学观测的补充。 后向散射数据覆盖时间从2002年到2017年,时间分辨率为逐月,覆盖范围为喀阿拉斯加北坡Anaktuvuk 河流区域,空间分辨率为30~100 m,C/L波段数据分开,每月数据的存放一个Geotiff文件。 数据的详细情况见阿拉斯加北坡Anaktuvuk 河流域SAR后向散射数据 -数据说明。
江利明
联系方式
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved
| 京公网安备11010502040845号
数据中心技术支持: 数云软件