我们提出利用U-net网络进行冰裂隙识别探测的算法,可以实现格陵兰冰盖典型冰川冰裂隙的自动化探测。基于Sentinel-1 IW每年7、8月的数据,为了抑制SAR图像的相干斑噪声,选择Probabilistic Patch-Based Weights (PPB)算法进行滤波,然后选择具有代表性的样本输入U-net网络进行模型训练,根据训练的模型进行冰裂隙的预测。以格陵兰2个典型冰川(Jakobshavn、Kangerdlussuaq)为例分类结果的平均准确率可达94.5%,其中裂隙区域的局部准确率可达78.6%,召回率为89.4%。
李新武, 梁爽, 杨博锦, 赵京京
我们提出利用U-net网络进行冰裂隙识别探测的算法,可以实现南极冰裂隙的自动化探测。基于Sentinel-1 EW 1月、2月的数据,为了抑制SAR图像的相干斑噪声,选择Probabilistic Patch-Based Weights(PPB)算法进行滤波,然后选择具有代表性的样本输入U-net网络进行模型训练,根据训练的模型进行冰裂隙的预测。以南极5个典型冰架(Amery、Fimbul、Nickerson、Shackleton、Thwaiters)为例分类结果的平均准确率可达94.5%,其中裂隙区域的局部准确率可达78.6%,召回率为89.4%。
李新武, 梁爽, 杨博锦, 赵京京
太阳总辐射和散射采用辐射表(CM22, Kipp & Zonen, 荷兰)测量,波长范围200-3600 nm。温湿度数据来源于IPEV/PNRA 项目 “Routine Meteorological Observation at Station Concordia” ,http://www.climantartide.it,地面水汽压单位为hPa。本数据集包括:利用经验模型计算的地面太阳总辐射、损失于大气中的吸收和散射辐射(小时累计值,单位MJ/m2)、大气顶和地表反照率;还包括散射因子(S/G)地面水汽压(E,单位hPa)。太阳辐射数据来源于数据提供者的计算、实验站测量,数据覆盖时间为2006-2016年(Bai, J.; Zong, X.; Lanconelli, C.; Lupi, A.; Driemel, A.; Vitale, V.; Li, K.; Song, T. 2022. Long-Term Variations of Global Solar Radiation and Its Potential Effects at Dome C (Antarctica). Int. J. Environ. Res. Public Health, 19, 3084. https://doi.org/10.3390/ijerph19053084)。该数据集可以用于南极Dome C地区太阳辐射及其衰减等相关研究。地面太阳辐射和其他气象数据可以参考:https://doi.org/10.1594/PANGAEA.935421
白建辉
太阳总辐射采用辐射表(CM21, Kipp & Zonen, 荷兰)测量,波长范围200-3600 nm。温湿度分别采用温湿度传感器HMP45C-GM (Vaisala Inc., Vantaa, Finland)测量。本数据集包括:利用经验模型计算的地面太阳总辐射、损失于大气中的吸收和散射辐射(小时累计值,单位MJ/m2)、大气顶和地表反照率;还包括散射因子(AF)地面水汽压(E,单位hPa)。太阳辐射数据来源于数据提供者的计算、实验站测量,数据覆盖时间为2007-2020年。关于数据处理和太阳总辐射计算等可参考文献:Bai, J.; Zong, X.; Ma, Y.; Wang, B.; Zhao, C.; Yang, Y.; Guang, J.; Cong, Z.; Li, K.; Song, T. 2022. Long-Term Variations in Global Solar Radiation and Its Interaction with Atmospheric Substances at Qomolangma. Int. J. Environ. Res. Public Health, 19, 8906. https://doi.org/10.3390/ijerph19158906。该数据集可以用于珠峰地区太阳辐射及其衰减等相关研究。珠峰站太阳辐射和其他气象数据可以参考:https://data.tpdc.ac.cn/zh-hans/data/b9ab35b2-81fb-4330-925f-4d9860ac47c3/。
白建辉
归一化植被指数(Normalized Difference Vegetation Index , NDVI)广泛应用于植被监测。本数据集利用2000-2020年青藏高原区域所有可用的Landsat 5/7/8数据(影像10万+),通过MODIS-Landsat数据融合算法(gap filling and Savitzky–Golay filtering;GF-SG),重建了青藏高原植被区域2000-2020年高时空分辨率(30米-8天)NDVI时间序列数据集(QTP-NDVI30)(算法细节请参考论文)。 本数据集具有良好的验证精度。定量评价结果显示重建NDVI影像数据的平均绝对误差MAE为0.02,平均相关系数R为0.96,图像结构相似性SSIM为0.94。选取典型区域与PlanetScope 3米空间分辨率影像比较,空间细节信息得到了较好的保持(产品评价细节请参考论文)。 本数据集地理坐标系为GCS_WGS_84, 空间范围覆盖青藏高原植被区域,植被区域定义为7-9月平均NDVI大于0.15。
曹入尹, 徐子超, 陈洋, 沈妙根, 陈晋
植被的净初级生产力(Net Primary Productivity,NPP)指绿色植物在单位时间、单位面积上由光合作用产生的有机物质总量(即总初级生产力,Gross Primary Productivity,GPP)中扣除自养呼吸后的剩余部分,NPP作为陆地生态系统的水循环、养分循环和生物多样性变化的基础,是估算地球支持能力和评价陆地生态系统可持续发展的重要生态指标。本数据集包括祁连山区域2021年月度合成30m NPP产品。采用最大值合成(Max value composition, MVC)方法,利用Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算NPP。
吴俊君, 李艺, 仲波
叶面积指数(Leaf Area Index,LAI)定义为地面单位投影面积内叶片总面积的一半,是描述植被的核心参数之一。LAI控制着植被的许多生物、物理过程,如光合、呼吸、蒸腾、碳循环和降水截获等,同时为植被冠层表面最初的能量交换提供定量化的信息,是一个十分重要的研究植被生态系统结构和功能的参数。本数据集包括祁连山区域2021年月度合成30m LAI产品。采用最大值合成 (Max value composition, MVC) 方法,利用Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算LAI。
吴俊君, 李艺, 仲波
归一化植被指数(Normalized Difference Vegetation Index,NDVI)是近红外波段的反射率值与红光波段的反射率值之差比上近红外波段的反射率值与红光波段的反射率值之和。植被指数合成是指在适当合成周期内选出植被指数最佳代表,合成一幅空间分辨率、大气状况、云状况、观测几何、几何精度等影响最小化的植被指数栅格图像。本数据集包括祁连山区域2021年月度合成30m植被指数产品。采用最大值合成(Max value composition, MVC)方法,利用Landsat 8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成。
吴俊君, 李艺, 仲波
植被覆盖度(Fractional Vegetation Coverage,FVC)定义为植被冠层或叶面在地面的垂直投影面积占植被区总面积的比例,是衡量地表植被状况的一个重要指标。本数据集植被覆盖度作为反应植被覆盖状况的评价指标,0%表示地表像元内没有植被即裸地,值越高表明区域内植被覆盖越大。本数据集包括祁连山区域2021年月度合成30m地表植被覆盖度产品。采用最大值合成(Max value composition, MVC)方法,利用 Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算FVC。
吴俊君, 李艺, 仲波
本数据集为2021年祁连山重点区域人类活动数据集,空间分辨率为2m。本数据集以祁连山重点区域矿山开采、城市扩展、耕地开发、水电建设、旅游开发为重点监测内容,通过高分辨率遥感影像,对比统计前后变化图斑。对祁连山地区地类发生变化的图斑,逐块调查核实;对判图可疑的地块,重新判读验证;对影像无法反映的地类,实地核实地类,采集相关数据,核对并修正位置。同时进一步核对2021年祁连山重点区域监测内容属性信息,统一进行图斑及其属性的录入和编辑,形成2021年祁连山地区人类活动数据集,实现祁连山地区生态治理的现势性和时效性,为祁连山重点区域人类活动监测提供数据支撑。
祁元, 张金龙, 周圣明, 袁晶, 王宏伟
数据集是青藏高原木里煤矿区2000-2020年土壤肥力数据,每五年一期,2000年、2005年、2010年、2015年、2020年,共5期;共15张影像数据。数据集为矩形区域(98.82°E-100.84°E,37.5°N-38.25°N),根据木里煤矿的东南西北的四个界限所划定。数据均为栅格格式,空间分辨率为30米,数据集格式为GeoTiff。数据集以时空融合GLDAS-2.1反照率产品和Landsat 5/7的反照率产品得到的30米地表反照率、时空融合GLDAS-2.1地表温度产品和Landsat 5/7的地表温度产品得到的30米地表温度为自变量,结合多元回归模型,回归得到2000-2020年5年一期的木里煤矿区总氮(单位g/kg)、总磷(单位g/kg)、总钾(单位g/kg)数据集。多元回归模型采用2018年5月王凌青湟水河流域站点实测数据,在自变量为Landsat 5/7的反照率、地表温度的前提下,因变量为野外观测的总磷、总氮及总钾下建立多元回归模型。这些数据集填补了木里煤矿高空间分辨率土壤肥力数据集空白,为研究木里矿区土壤肥力时空变化提供了支持。
陈少辉
充分利用多源植被分类/土地覆盖分类产品各自的优势,通过专门设计与青藏高原植被类型相适应的植被分类体系,选用集成分类方法,在数据可靠性的基础上遵循一致性的原则,制作了青藏高原现状植被图,其在现势性、分类体系的针对性和分类精度上均表现更优。从分类结果的现势性来看,青藏高原现状植被图较早期中国植被图能更好地反映青藏高原植被覆盖现状;从分类体系的针对性来看,青藏高原现状植被图采用了针对青藏高原植被专门设计的分类体系,有利于从多源数据产品中充分提取出具备高可靠性和一致性的植被覆盖信息;从分类精度来看,青藏高原现状植被图的总体精度(78.09%,Kappa系数0.75)较已有相关数据产品提高了18.84% ~ 37.17%,特别是对草地、灌丛等植被类型的分类精度有明显提升。
张慧, 赵涔良, 朱文泉
雅鲁藏布江流域内巨量固体碎屑物质是记录青藏高原隆升剥蚀历史的重要组成部分之一,不同类型松散沉积物是固体碎屑物质差异输运的直接反映,揭示其空间分布规律及沉积总量,对于深入理解青藏高原的隆升与剥露过程具有重要参考价值。该数据集共包括雅鲁藏布江流域松散沉积物类型及其空间分布图集、厚度空间分布图集和沉积总量估算表等三类图表数据集,以遥感解译与地质填图为主要技术方法,全面厘清了雅鲁藏布江全流域范围内(16个复合子流域)松散沉积物的类型及其空间展布特征,并依据全流域松散沉积物厚度实测数据初步估算了沉积总量。巨量松散沉积物也是流域内滑坡、泥石流、洪沙灾害的重要物质来源,查明其空间展布规模与总量不仅对揭示沉积物源汇过程中记录的地表环境变化、区域构造运动、气候变化、生物地球化学循环等关键信息具有理论意义,同时对高原生态环境监测与保护、洪沙灾害预警与防治、重大基础工程建设和水土保持等具有重要应用价值。
林志鹏, 王成善, 韩中鹏, 白雅俪格, 王新航, 张建, 马星铎, 胡太宇, 张晨敬
本数据集包括祁连山地区2021年逐日地表蒸散发产品,产品分辨率为0.01°。采用高斯过程回归(Gaussian Process Regression,GPR)算法,实现对RS-PM (Mu et al., 2011)、SW (Shuttleworth and Wallace., 1985)、PT-JPL (Fisher et al., 2008)、MS-PT (Yao et al., 2013)、SEMI-PM (Wang et al., 2010a)、SIM (Wang et al.2008) 等6种蒸散发产品的集成。参与蒸散发产品生产的驱动数据包括MODIS(NDVI、Albedo、LAI、PAR),MERRA-2气象再分析数据等。
姚云军, 刘绍民, 尚珂
本数据集包括了中蒙俄经济走廊区1982-2015年最大归一化植被指数(NDVI)数据,2000-2020年最大增强型植被指数(EVI)数据,以及2001-2019年土地覆被利用变化数据(LUCC)。其中,NDVI数据提取自GIMMS卫星数据,分辨率为8km;EVI和LUCC数据提取自MODIS卫星数据(MOD13A3和MCD12C1),分辨率分别为1km和5km。数据集过滤了MODIS卫星数据中原本存在的异常值或缺测值,相比源数据质量更高。其中,使用最大值提取法处理NDVI和EVI数据,得到年最大NDVI和EVI,可以更好地反应研究区的植被分布及变化情况。基于卫星遥感数据的植被和土地利用变化,可以为中蒙俄经济走廊生态环境风险防控提供数据支撑。
张雪芹
中国2000-2020年逐日积雪反照率产品数据集地理空间范围为72 - 142E,16 - 56N,采用等经纬度投影,空间分辨率0.005°。数据集时间范围覆盖2000年1月1日至2020年12月31日,时间分辨率为1天。数据包含6个要素:黑空反照率(Black_Sky_Albedo)、白空反照率(White_Sky_Albedo)、太阳天顶角(Solar_Zenith_Angle)、云标识(Cloud_Mask)、林区校正标识(Forest_Mask)和反演情况标识(Abnormal_Mask)。黑空反照率要素记录了反演得到的黑空反照率,计算因子为0.0001,数据范围为0-10000。白空反照率要素记录了反演得到的白空反照率,计算因子为0.0001,数据范围为0-10000。太阳天顶角要素记录了太阳天顶角度,计算因子为0.01,数据范围为0-9000。云标识要素记录了像元是否为云,值为0表示非云,值为1表示为云。林区校正标识要素记录了像元是否作为森林类型像元被校正过,值为0表示未校正,值为1表示已校正。反演情况标识要素记录了像元所对应的黑空反照率及白空反照率的反演结果是否为小于0或大于10000的异常值,值为0表示非异常值,值为1表示为异常值。数据集基于MODIS地表反射率产品MOD09GA,积雪产品MOD10A1/MYD10A1和全球数字高程模型SRTM数据,在ART模型基础上发展了积雪反照率反演模型,并利用GEE和本地端交互生产而来。为了评估ChinaSA的反演质量,利用地面台站的观测数据提出了样方观测验证方法,验证了积雪反照率产品的精度,并与常用的四种反照率产品(GLASS、GlobAlbedo、MCD43A3和SAD)进行了精度对比。验证结果表明,ChinaSA在所有验证中精度都优于其他产品,均方根误差小于0.12,在森林区域的均方根误差能达到0.021。
肖鹏峰, 胡瑞, 张正, 秦棽
华北平原(NCP)是中国最重要的农业生产基地之一,其面积约14万平方公里。除了从黄河取地表水进行渠灌,华北平原还开采大量地下水用于灌溉。高时空分辨率且连续完整的逐日蒸散(ET)估算,将极大提高我们对整个NCP农业用水消耗的认识,服务于农业水资源高效利用。基于双源能量平衡模型(TSEB)和数据融合,本研究在华北平原生成1 km空间分辨率和日尺度,且时间跨度为2008年1月至2019年12月的蒸散数据集。该数据集时空连续完整,且具有较高的空间分辨率。相较于其他产品,该数据集具有可靠的精度,甚至好于已发表的结果。此外,该数据集和相关方法对NCP以及其他农作物种植区的多尺度变化和趋势分析具有重要价值。
张才金, 龙笛
“亚洲水塔”青藏高原(TP)的降水在区域水和能源循环中发挥着关键作用,对下游国家的水资源供应有重要影响。气象站点所获取的降水信息通常被认为是最准确的,但在地形复杂、环境恶劣的青藏高原中,气象站数据却十分有限。卫星和再分析降水产品可以为地面测量提供补充信息,特别是在大面积测量不足的区域。在这里,我们通过使用人工神经网络 (ANN) 和环境变量(包括海拔、地表压力和风速)确定各种数据源的权重来最优地融合站点、卫星和再分析数据。在 1998-2017 年期间,以每日时间尺度和 0.1° 的空间分辨率生成了一个多源降水 (MSP) 数据集横跨青藏高原。与其他四颗卫星产品相比,MSP与标准观测的日降水相关系数(CC)最高(0.74),均方根误差第二低,表明MSP的质量和数据合并的有效性方法。我们使用分布式水文模型进一步评估了青藏高原长江和黄河源头测量不佳的不同降水产品的水文效用。在 2004-2014 年期间,MSP 实现了每日流量模拟的最佳 Nash-Sutcliffe 效率系数(超过 0.8)和 CC(超过 0.9)。此外,基于多重搭配评估,MSP 在未测量的西部 TP 上表现最好。该合并方法可应用于全球其他数据稀缺地区,为水文研究提供高质量的降水数据。整个 TP 的左下角的经纬度、行数和列数以及网格单元信息都包含在每个 ASCII 文件中。
洪仲坤, 龙笛
针对青藏高原泛三江并流区的17.9万km2的区域,通过Sentinel-1升降轨,以及Palsar-1升轨三种SAR数据进行InSAR变形观测,根据获取的InSAR变形图像,结合地貌和光学影像特征进行综合解译。共识别得到海拔4000m以下的活动性滑坡949处。需要注意的是,因不同SAR数据的观测角度、敏感度和观测时相的差异,同一滑坡用不同数据解译存在一定的差异,在滑坡的范围、边界方面需要借助地面和光学影像进行修正。滑坡InSAR识别比例尺的概念与传统空间分辨率不同,主要依靠变形强度,因此一些规模较小,但与背景相比变形特征突出,整体性强,与地物具有逻辑空间关系的滑坡也能得以解译(配合SAR的强度图、地形阴影图、光学遥感影像为地物参照)。本次最小解译区域可达几个像素,如参考怒江沿江公路解译了一处只有4个像素的公路边坡滑坡。
姚鑫
本数据是研究团队综合利用Sentinel-1 SAR数据,AMSR-2微波辐射计数据以及MODIS LST产品所生产的青藏工程走廊区域高分辨土壤冻融数据集。基于新提出的算法,本产品提供月尺度100m空间分辨土壤冻融状态检测结果,并通过气象站点和土壤温度站点进行精度验证。基于青藏工程走廊地区的4个气象站点进行精度验证,结果表明基于升轨和降轨Sentinel-1的土壤冻融检测结果的整体准确率分别为84.63%和77.09%。基于那曲土壤湿度/温度监测站点进行精度验证,升轨和降轨结果的平均整体精度为78.58%和76.66。该产品弥补了传统土壤冻融产品空间分辨率不足(>1km)的问题,为青藏工程走廊区域高分辨率土壤冻融监测提供了可能。
周欣, 刘修国, 周俊雄, 张正加, 陈启浩, 解清华
本数据为关于四川省北川地区、云南省鲁甸地区、贵州省毕节地区的影像信息数据,可用于构建山体震裂崩塌遥感影像的解译识别标志,揭示山体震裂崩塌形成的一般形式,评估具体山体震裂崩塌的危险等级;数据可结合DEM数据用于挖掘山体震裂崩塌的发育机制等。可在此基础上进一步研究,完善研究山体震裂崩塌的智能识别理论及形成机制,为寻找其他相似类型震裂崩塌物源提供指示意义。本项目部分原始数据可用于全面了解鲁甸区域山体震裂崩塌危险性等。
韩征
该数据集包含2013年至2020年间逐年赤道北部非洲与萨赫勒地区NPP-VIIRS夜光数据影像。基于国家极地轨道(National Polar-orbiting Partnership, NPP) 卫星可见光近红外成像辐射计 (Visible Infrared Imaging Radiometer Suite, VIIRS)月平均夜光影像数据,将生物量燃烧引起的不稳定夜间灯光从人类活动引起的稳定夜光信息中分离后,合成得到逐年赤道北部非洲与萨赫勒地区NPP-VIIRS夜光遥感数据。数据空间分辨率为500 m,栅格数据类型为Geotiff。栅格像元值为辐亮度,单位为10−9 W∙cm−2∙sr−1。该数据集在一定程度上提高了夜光影像在赤道北部非洲与萨赫勒地区对小规模的、零散分布的、电力供应不稳定的城镇信息识别能力,可进一步应用于赤道北部非洲与萨赫勒地区的人类活动相关研究。
袁笑甜, 贾立, 蒋敏
该数据为九寨沟日则泥石流的DOM数据;采用飞马V10无人机搭载RIEGL VUX-1LR机载激光雷达系统对同轴获取的光学影像采用Pix4d mapper进行处理,制作了正射影像图;正射影像图分辨率为0.2m,坐标系为CGCS2000国家坐标系,1985国家高程基准;基于机载LiDAR数据结合光学影像数据开展泥石流物源识别与计算工作,根据物源所处的位置以及在山体阴影图像上的色彩及纹理差异,将物源分为崩滑物源、坡面物源和沟道物源并建立各类型物源的机载LiDAR识别标志与遥感解译方法,为泥石流物源的精确计算提供理论参考和数据支撑,进一步服务于泥石流的防治与风险评价。
董秀军
该数据为九寨沟日则泥石流沟的DEM数据,采用飞马V10无人机搭载RIEGL VUX-1LR机载激光雷达系统获取,通过机载激光雷达技术去除植被后生成的DEM数据,能得到真实的地表形态为泥石流物源的识别与计算提供新的解决方案;数据采用芬兰 Arttu Soininen 工程师开发的TerraSolid软件,通过形成宏命令经点云去噪、滤波、分类后,获取研究区真实地表点云数据,进而利用分类出的地面点构建了高精度数字高程模型;获取的激光点云数据平均密度优于50点/m2,数字高程模型分辨率为0.5m,坐标系为CGCS2000国家坐标系,1985国家高程基准;基于机载LiDAR数据开展泥石流物源识别与计算工作,根据物源所处的位置以及在山体阴影图像上的色彩及纹理差异,将物源分为崩滑物源、坡面物源和沟道物源并建立各类型物源的机载LiDAR识别标志与遥感解译方法,为泥石流物源的精确计算提供理论参考和数据支撑,进一步服务于泥石流的防治与风险评价。
董秀军
该数据为九寨沟西番沟泥石流的DOM数据;采用飞马V10无人机搭载RIEGL VUX-1LR机载激光雷达系统对同轴获取的光学影像采用Pix4d mapper进行处理,制作了正射影像图;正射影像图分辨率为0.2m,坐标系为CGCS2000国家坐标系,1985国家高程基准;基于机载LiDAR数据结合光学影像数据开展泥石流物源识别与计算工作,根据物源所处的位置以及在山体阴影图像上的色彩及纹理差异,将物源分为崩滑物源、坡面物源和沟道物源并建立各类型物源的机载LiDAR识别标志与遥感解译方法,为泥石流物源的精确计算提供理论参考和数据支撑,进一步服务于泥石流的防治与风险评价。
董秀军
该数据为九寨沟西番沟泥石流的DEM数据,采用飞马V10无人机搭载RIEGL VUX-1LR机载激光雷达系统获取,通过机载激光雷达技术去除植被后生成的DEM数据,能得到真实的地表形态为泥石流物源的识别与计算提供新的解决方案;数据采用芬兰 Arttu Soininen 工程师开发的TerraSolid软件,通过形成宏命令经点云去噪、滤波、分类后,获取研究区真实地表点云数据,进而利用分类出的地面点构建了高精度数字高程模型;获取的激光点云数据平均密度优于50点/m2,数字高程模型分辨率为0.5m,坐标系为CGCS2000国家坐标系,1985国家高程基准;基于机载LiDAR数据开展泥石流物源识别与计算工作,根据物源所处的位置以及在山体阴影图像上的色彩及纹理差异,将物源分为崩滑物源、坡面物源和沟道物源并建立各类型物源的机载LiDAR识别标志与遥感解译方法,为泥石流物源的精确计算提供理论参考和数据支撑,进一步服务于泥石流的防治与风险评价。
董秀军
该数据为九寨沟甘沟泥石流的DOM数据;采用飞马V10无人机搭载RIEGL VUX-1LR机载激光雷达系统对同轴获取的光学影像采用Pix4d mapper进行处理,制作了正射影像图;正射影像图分辨率为0.2m,坐标系为CGCS2000国家坐标系,1985国家高程基准;基于机载LiDAR数据结合光学影像数据开展泥石流物源识别与计算工作,根据物源所处的位置以及在山体阴影图像上的色彩及纹理差异,将物源分为崩滑物源、坡面物源和沟道物源并建立各类型物源的机载LiDAR识别标志与遥感解译方法,为泥石流物源的精确计算提供理论参考和数据支撑,进一步服务于泥石流的防治与风险评价。
董秀军
该数据为九寨沟甘沟泥石流的DEM数据,通过机载激光雷达技术去除植被后生成的DEM数据,能得到真实的地表形态为泥石流物源的识别与计算提供新的解决方案;数据采用芬兰 Arttu Soininen 工程师开发的TerraSolid软件,通过形成宏命令经点云去噪、滤波、分类后,获取研究区真实地表点云数据,进而利用分类出的地面点构建高精度数字高程模型;获取的激光点云数据平均密度优于50点/m2,数字高程模型分辨率为0.5m,坐标系为CGCS2000国家坐标系,1985国家高程基准;基于机载LiDAR数据开展泥石流物源识别与计算工作,根据物源所处的位置以及在山体阴影图像上的色彩及纹理差异,将物源分为崩滑物源、坡面物源和沟道物源并建立各类型物源的机载LiDAR识别标志与遥感解译方法,为泥石流物源的精确计算提供理论参考和数据支撑,进一步服务于泥石流的防治与风险评价。
董秀军
该数据集为云降水过程综合观测数据集的分数据集,源自2021年期间在六盘山地区开展的综合考察试验。六盘山科考在大湾站、径源站、六盘山站、隆德站等多地实施,其中大湾站主要布署CFL-06型风廓线雷达、HT101型云雷达、MRR-2微雨雷达、DSG5型雨滴谱仪、三维风速仪、C12激光云高仪,径源站主要布署QFW-6000型微波辐射计、HMB-KPS型云雷达、DSG5型雨滴谱仪、CL51激光云高仪,六盘山站主要布署HT101型云雷达、MRR-2微雨雷达、OTT型激光雨滴谱仪、云凝结核(CCN)计数器、三维风速仪、FM120雾滴谱仪、C12激光云高仪,隆德站主要布署RPG-HATPRO-G4型微波辐射计、CFL-06型风廓线雷达、HT101型云雷达、MRR-2微雨雷达、OTT型激光雨滴谱仪、C12激光云高仪,同时开展自动气象站、铁塔(和尚铺)和X波段全固态双线偏振多普勒天气雷达(彭阳县),以及梯度站等观测,可为高原系统东移对下游的影响研究,以及为揭示高山地区大气边界层和自由大气交换过程对气溶胶、云、雾和降水及其相互作用的影响提供数据支撑。
付丹红
沱沱河源区植被类型图是基于 319 个地面采样点数据结合随机森林(RF)分类方法进行创建的。随机森林分类器的16个输入变量包括了Landsat-8的可见光、短波红外和热红外波段值及其反演的植被指数和地表温度数据等。根据研究区的植被特征及多年冻土模拟的需要,该图对高寒沼泽草甸(alpine swamp meadow)、高寒草甸(alpine meadow)、高寒草原(alpine steppe)和高寒沙漠(alpine desert )等4种植被类型进行了分类。图件的空间分辨率为30 m,可以提供更细节的植被类型的位置信息。
邹德富, 赵林, 刘广岳, 杜二计, 胡国杰, 李智斌, 吴通华, 吴晓东, 陈杰
该数据集为云降水过程综合观测数据集的分数据集,源自2021年期间在三江源地区开展的综合考察试验。三江源科考以先进的空中国王飞机观测为主,机载观测系统包括气溶胶、云粒子谱仪和图像仪观测,观测要素包括IP探头降水粒子浓度及图像、CIP探头云粒子浓度及图像、CAS探头云和气溶胶粒子数据、Hotwire_LWC探头液水数据、CAPS Summary 气溶胶、云、降水综合数据、AIMMS探头常规气象要素、PCASP-100探头气溶胶粒子数据。地面观测包括雨滴谱仪、微波辐射计和X波段雷达,其中雨滴谱仪主要观测等效体积直径、粒子下降速度,微波辐射计主要观测温度、湿度、水汽和液态水等,X波段雷达主要观测强度,速度,谱宽等,可为西风-季风协同影响对三江源云降水过程的影响研究提供数据支持。
付丹红
该数据集为云降水过程综合观测数据集的分数据集,源自2020年期间在祁连山南北坡开展的综合考察试验,空中观测以空中国王飞机为主,地基考察包括自动气象站、雨滴谱仪、微波辐射计、云雷达、探空秒数据等,其中自动气象站观测要素包括气温、气压、湿度、风向、风速、降水量,雨滴谱仪观测要素包括粒子谱、降水强度等,微波辐射计观测要素为大气温度、湿度廓线,云雷达观测要素主要为定点垂直观测数据,并开展气溶胶、雨水、冰雹、土壤样品采集,可为揭示西风-季风对祁连山云降水过程和大气水循环的影响研究提供数据支持。
付丹红
本数据集是一个包含10年(2010-2019)的全球日尺度地表土壤水分数据集,分辨率为36 km,采用EASE-Grid2投影坐标系,数据单位为m3/m3. 数据集采用Yao et al.(2017,2021)发展的土壤水分神经网络反演算法,将SMAP的优势传递到FY-3B/MWRI,利用人工神经网络方法,以SMAP标准土壤水分产品为训练目标,以FY-3B/MWRI的亮温为输入,最终输出长时序土壤水分数据。土壤水分精度和SMAP接近,达到5%左右。( 全球14个密集观测站网的验证精度 )。
姚盼盼, 卢麾, 赵天杰, 武胜利, 施建成
城市建成区的变化反映了城市的发展情况,因此对建成区变化过程的信息提取是研究城市发展和区域经济的重要前提。该数据集包含1985 年至 2018 年关键节点建成区表面积的年变化信息,分辨率为 30m。 使用监督分类和时间一致性检查的组合方法,以汉班托塔、仰光和达卡三个关键节点为研究区域,确定从非建成区到建成区的变化。 建成区像素定义为 50% 以上不透水。 发生转变的年份(从非建成区到建成区)可以从像素值中识别,范围从34(年份:1985)到1(年份:2018)。 例如,1990 年的建成区可以显示为像素值大于 29。 在从非建成区到建成区单调转换之后,该数据集在时间上是一致的。
刘林志, 凌峰
遥感为大范围地表监测提供重要的技术手段。得益于Landsat TM、ETM+、和OLI/TIRS丰富的时序影像数据和高性能的Google Earth Engine(GEE)云平台,大尺度地表覆盖制图成为了可能。本数据以仰光、汉班托塔、达卡三个关键节点为研究区域,借助 Google Earth Engine 平台,利用现有多套全球土地覆盖产品、Landsat卫星系列影像,结合多数据融合、时序变化检测和机器学习等方法,研制了一套高时空一致性的2000–2020年30 m分辨率逐年土地覆盖变化数据集。
刘林志, 凌峰
本数据集是一个包含接近35年(1984-2018)的全球高分辨率光合有效辐射数据集,其分辨率为3小时/逐日/逐月,10公里,数据单位为W/㎡,瞬时值。该数据集可用于生态过程模拟和全球碳循环的理解。该数据集是基于改进的物理参数化方案并以ISCCP-HXG云产品、ERA5再分析数据、MERRA-2气溶胶数据以及MODIS反照率产品为输入而生成的。验证并和其他全球卫星辐射产品比较表明,该数据集的精度通常比CERES全球卫星辐射产品的精度要高。该全球辐射数据集将有助于未来生态过程模拟的研究和全球二氧化碳通量的估算。
唐文君
本数据集是2017年8月-9月于阿里地区采集的典型地物光谱测量数据。高光谱数据使用ASD便携式地物光谱仪FieldSpec 4测量。进行光谱测量时基本为光线稳定的晴天,测量时记录了云量情况。测量前使用白板进行校准;并使用GPS记录经纬度坐标;记录了测量的植被类型;同时测量了周围土壤的光谱数据。地物光谱仪记录的DN值为.asd格式文件,可使用ViewSpecPro软件读取,并利用EXCEL结合白板数据转换为反射率。光谱数据用于提取不同植被类型光谱特征、植被分类、反演植被覆盖度等。
刘林山, 张炳华
基于环境敏感区指数(ESAI)方法,计算获得2021年阿拉伯半岛栅格荒漠化风险数据。ESAI方法考虑土壤,植被,气候和管理质量,是监测荒漠化风险最广泛的方法之一。根据ESAI指标框架,选择了14个指标计算四个质量领域,每个质量指数均由几个指标参数计算获得。参考前人研究,确定每个参数分类及其阀值。然后,根据每个类别在荒漠化的敏感性中的重要性以及与荒漠化过程的开始或不可逆转的退化关系,把每个类别分配了1(最低敏感度)和2(最高敏感度)之间的敏感性得分。关于如何选取指标以及与荒漠化风险和得分相关性,在Kosmas的研究中提供了更全面的描述。主要指标数据集来源于联合国粮农组织的世界土壤数据,欧空局的土地覆盖数据和AVHRR数据。所有栅格数据集重采样到500m并合成年度值。尽管验证综合评估指数存在困难,但根据ESAI值的时空比较,对荒漠化风险进行了间接验证,包括对ESAI与稀疏植被和草地转变关系的定量分析和分析ESAI与植被净初级生产力之间的关系。验证结果表明阿拉伯半岛的荒漠化风险数据精度可靠。
许文强
该数据集于2021年5月底至6月在青藏高原野外考察期间使用无人机航拍所得,航片数据量为 3.4 GB,共包含330余张无人机航片。拍摄地点主要位于西藏的拉萨、林芝,云南省的大理、怒江,四川甘孜、阿坝、凉山等州市地区的道路沿线、居民点及其周边地区。所拍航片主要反映拍摄时点当地的土地利用/覆被类型、设施农业用地分布、植被覆盖度等信息,航片具有经纬度和海拔等空间位置信息,不仅可以为土地利用分类提供基础验证信息,而且还能通过计算植被覆盖度,为大尺度区域植被覆盖度的遥感影像反演等工作提供参考。
吕昌河, 张泽民
冰盖表面融化是影响格陵兰冰盖物质平衡的主要原因,同时冰雪的反射率较高,冰盖表面融化会造成辐射能量收支差异,进而影响海-陆-气之间能量交换。高分辨率冰盖表面融化产品的生成,对研究格陵兰冰盖表面融化及其对全球气候变化的响应提供重要信息支撑。本数据集基于微波辐射计与光学反照率产品,对微波辐射计当日、冬季(12-次年2月)平均和1月平均进行波段合成,利用Gram-Schmidt方法将微波辐射计波段合成数据与MODIS GLASS反照率产品融合,使其空间分辨率从25 km提高至0.05˚。然后基于微波辐射计当日与冬季亮温差值的阈值法对降尺度结果提取格陵兰冰盖表面融化,得到1985年、2000年、2015年格陵兰冰盖表面0.05˚ 每日融化产品。该数据集0.05˚ 的空间分辨率高于目前国内外已发布数据集,凸显了辐射计和反照率数据对表面融化的响应,空间细节特征更加清晰,保持了原辐射计产品的动态范围,有效地抑制了辐射计噪声。该数据集的数据类型为整型,其中1代表融化,0代表未融化,255代表冰盖以外掩膜区域,数据集以“*.nc”格式存储。
魏思怡, 刘岩
本数据集包括青海省盐湖区的原始landsat卫星影像资料TM、ETM+数据,时间为2020年01月-12月,包括MSS传感器的4个波段(空间分辨率78m),TM传感器的7波段和ETM+传感器的8波段(空间分辨率15m、30m)。数据基于USGS官网搜集整理的盐湖区的MSS、TM、ETM+遥感影像数据,数据处理过程有严格的质量保证措施,数据经质检后入库,能够保证数据质量。数据大小约为22.3GB。
陈亮, 王建萍
本数据集包括西藏自治区盐湖区的原始landsat卫星影像资料TM、ETM+数据,时间为2013年01月-12月,包括MSS传感器的4个波段(空间分辨率78m),TM传感器的7波段和ETM+传感器的8波段(空间分辨率15m、30m)。数据基于USGS官网搜集整理的盐湖区的MSS、TM、ETM+遥感影像数据,数据处理过程有严格的质量保证措施,数据经质检后入库,能够保证数据质量。数据大小约为73.6GB。
陈亮, 王建萍
本数据集包括青海省盐湖区的原始landsat卫星影像资料TM、ETM+数据,时间为2013年01月-12月,包括MSS传感器的4个波段(空间分辨率78m),TM传感器的7波段和ETM+传感器的8波段(空间分辨率15m、30m)。数据基于USGS官网搜集整理的盐湖区的MSS、TM、ETM+遥感影像数据,数据处理过程有严格的质量保证措施,数据经质检后入库,能够保证数据质量。数据大小约为20.6GB。
陈亮, 王建萍
本数据集包括西藏自治区盐湖区的原始landsat卫星影像资料TM、ETM+数据,时间为2002年01月-12月,包括MSS传感器的4个波段(空间分辨率78m),TM传感器的7波段和ETM+传感器的8波段(空间分辨率15m、30m)。数据基于USGS官网搜集整理的盐湖区的MSS、TM、ETM+遥感影像数据,数据处理过程有严格的质量保证措施,数据经质检后入库,能够保证数据质量。数据大小约为10.11GB。
陈亮, 王建萍
本数据集包括青海省盐湖区的原始landsat卫星影像资料TM、ETM+数据,时间为2002年01月-12月,包括MSS传感器的4个波段(空间分辨率78m),TM传感器的7波段和ETM+传感器的8波段(空间分辨率15m、30m)。数据基于USGS官网搜集整理的盐湖区的MSS、TM、ETM+遥感影像数据,数据处理过程有严格的质量保证措施,数据经质检后入库,能够保证数据质量。数据大小约为3.18GB。
陈亮, 王建萍
本数据集包括西藏自治区盐湖区的原始landsat卫星影像资料TM、ETM+数据,年份为1991-1992年,包括MSS传感器的4个波段(空间分辨率78m),TM传感器的7波段和ETM+传感器的8波段(空间分辨率15m、30m)。数据基于USGS官网搜集整理的盐湖区的MSS、TM、ETM+遥感影像数据,数据处理过程有严格的质量保证措施,数据经质检后入库,能够保证数据质量。数据大小约为5.63GB。
陈亮, 王建萍
本数据集包括青海省盐湖区的原始landsat卫星影像资料TM、ETM+数据,年份为1992、1977、1993年,包括MSS传感器的4个波段(空间分辨率78m),TM传感器的7波段和ETM+传感器的8波段(空间分辨率15m、30m)。数据基于USGS官网搜集整理的盐湖区的MSS、TM、ETM+遥感影像数据,数据处理过程有严格的质量保证措施,数据经质检后入库,能够保证数据质量。数据大小约为2.66GB。
陈亮, 王建萍
本数据集包括西藏自治区盐湖区的原始landsat卫星影像资料TM、ETM+数据,年份为1977年,包括MSS传感器的4个波段(空间分辨率78m),TM传感器的7波段和ETM+传感器的8波段(空间分辨率15m、30m)。数据基于USGS官网搜集整理的盐湖区的MSS、TM、ETM+遥感影像数据,数据处理过程有严格的质量保证措施,数据经质检后入库,能够保证数据质量。数据大小约为1.30GB。
陈亮, 王建萍
冰雪具有高反射率,冰盖表面融化会降低地表反照率进而影响区域能量平衡,表面融化形成的水文系统会影响冰盖稳定性进而影响冰盖物质平衡。本数据集基于微波辐射计与光学反照率产品,对微波辐射计当日、冬季(6-8月)平均和7月平均进行波段合成,利用Gram-Schmidt方法将微波辐射计波段合成数据与MODIS GLASS反照率产品融合,使其空间分辨率从25 km提高至0.05˚。然后基于微波辐射计当日与冬季亮温差值的阈值法对降尺度结果提取南极冰盖表面融化,得到1985-1986年、2000-2001年、2015-2016年南极冰盖表面0.05˚ 每日融化产品。该数据集0.05˚ 的空间分辨率高于目前国内外已发布数据集,凸显了辐射计和反照率数据对表面融化的响应,空间细节特征更加清晰,保持了原辐射计产品的动态范围,有效地抑制了辐射计噪声,更好的反映了山区、触地线区域和冰架的融化范围随时间的梯度演变特征,产品精度更高。该数据集的数据类型为整型,其中1代表融化,0代表未融化,255代表冰盖以外掩膜区域,数据集以“*.nc”格式存储。
魏思怡, 刘岩
本数据集包括青海省盐湖区的原始landsat卫星影像资料TM、ETM+数据,年份为1976、1977、1978年,包括MSS传感器的4个波段(空间分辨率78m),TM传感器的7波段和ETM+传感器的8波段(空间分辨率15m、30m)。数据基于USGS官网搜集整理的盐湖区的MSS、TM、ETM+遥感影像数据,数据处理过程有严格的质量保证措施,数据经质检后入库,能够保证数据质量。数据大小约为700MB。
陈亮, 王建萍
激光雷达、多光谱和热红外数据是水文、生态、环境监测等研究领域的重要观测数据。本数据集为2020年黑河中游天地一体化综合观测试验无人机观测数据。数据集包括2020年8月16日至21日的无人机遥感数据,无人机平台为大疆精灵4-多光谱版。包括大满超级站(8月16日至21日)、花寨子站(8月19日)、湿地站(8月21日)的激光雷达数据,激光扫描系统为Tovos DroneScan,扫描频率30万点/秒,点密度100点/平方米,扫描精度5厘米;大满超级站(8月18日)、花寨子站(8月19日)、湿地站(8月21日)的多光谱数据,数据集包括5个波段影像,分别为蓝(450nm±16nm)、绿(560nm±16nm)、红(650nm±16nm)、红边(730nm±16nm)、近红外(840nm±26nm)波段;以及湿地站和花寨子站对应生成的NDVI和反射率数据产品,以上数据的空间分辨率约为0.2m;此外,还包括花寨子站(8月18日和19日)、湿地站(8月21日)的热红外数据,热红外通道的波长范围:7.5-13.5μm,成像系统灵敏度(NEDT)< 50MK,最高帧率:30HZ,场景范围(高增益):640×512: -25°至135℃,336×256: -25°至100℃,场景范围(低增益):-40°至550℃。
晋锐
在国家重点研发计划“冰冻圈和极地环境变化关键参数观测与反演”第一课题“冰冻圈关键参数多尺度观测与数据产品研制“的资助下,中国科学院青藏高原研究所张寅生课题组发展了青藏高原地区降尺度雪深产品。青藏高原积雪深度降尺度数据集来源于积雪概率数据和中国雪深长时间序列数据集的融合结果,采用新发展的亚像元时空分解算法对原始0.25度的积雪深度数据进行时空降尺度,得到0.05度逐日积雪深度产品。通过降尺度前后的雪深产品精度评估的对比,发现降尺度后雪深产品的均方根误差由原产品的2.15 cm减少到了1.54 cm。 青藏高原积雪深度降尺度数据集(2000-2018)的产品信息细节如下。投影为经纬度,空间分辨率0.05 度(约5公里),时间范围为2000年9月1日-2018年9月1日,为Tif格式文件,命名规则为:SD_YYYYDDD.tif,其中YYYY代表年,ddd代表儒略日(001-365)。积雪深度(SD),单位:厘米(cm)。空间分辨率为0.05度。时间分辨率为逐日。
闫大江, 马宁, 张寅生
闪电河流域L波段地基微波辐射计观测数据集收集了中国科学院东北地理与农业生态研究所于2018年9月在闪电河流域开展了的地基L波段移动观测实验数据。将L波段微波辐射计安装于长春净月潭遥感车升降台上,平台升高至5米,进行双极化多角度观测,微波辐射计系统的上位机系统直接将数据存储为.dat文件,可以使用Excel或Matlab进行读取处理,汇交的数据已经整理成Excel。本数据可以用于土壤水分反演方法研究。
姜涛, 郑兴明, 李晓洁
本植被含水量数据集来源于滦河流域土壤水分遥感试验中的地面同步观测,包括:(1)70 km×12 km 典型试验区(南北航线)的17个样区;(2)165 km×5 km复杂试验区(东北—西南航线)的8个样区;(3)地基微波辐射计观测的6个样区。地物类型包括草地、玉米、土豆、莜麦和胡萝卜。数据测量时间为2018年9月13日到2018年9月26日。植被含水量的测量方法为收获法,行播作物按照长度进行收获,草地按照面积进行收获。本数据集经过称重、烘干和植被含水量计算等步骤处理得到。
郑兴明, 姜涛
本数据集来源于滦河流域土壤水分遥感试验中的多频多角度地基微波辐射计与雷达主被动协同观测试验。试验地点位于内蒙古自治区正蓝旗昕元牧场(115.93°E, 42.04°N),数据获取于2018年夏季。数据集包含四个部分,即:亮温数据、后向散射数据、土壤数据和植被数据。微波亮温数据由RPG-6CH-DP车载微波辐射计观测得到,包含三个微波波段(L, C和X)的水平和垂直极化亮温,观测入射角变化范围为30-65° (2.5°间隔),数据测量时间间隔为0.5小时。主动微波数据由地基雷达(GBSAR)观测得到,包含了L和C波段四种极化(VV, VH, HH, HV)下的后向散射系数,观测入射角变化范围为30-65°(2.5°间隔)。土壤数据包含地表粗糙度和6层土壤水分和土壤温度(1 cm, 3 cm, 5 cm, 10 cm, 20 cm, 50 cm),采样间隔为10分钟;植被数据为草地的植被含水量。 试验观测时间从2018年8月18日持续到9月25日,数据涵盖的草地多频多角度微波亮温、后向散射系数以及土壤和植被等相关配套数据为陆表微波辐射散射建模与验证、主被动微波亮温降尺度、土壤水分反演算法发展和验证提供了重要资料。
赵天杰, 胡路, 耿德源, 施建成
透明度,作为一种最直观地反映水质特性的指标之一,能够综合地反映水体生态系统的营养状态。光学遥感技术为监测大范围湖泊(包括水库)透明度变化提供了可能。中国湖泊(>1公顷)透明度的年均值数据集覆盖时间从1990到2018年,时间分辨率为5年一期,空间分辨率为30米,使用的数据源为GEE平台的Landsat 长时间序列天顶角反射率产品数据。中国的青藏高原、蒙新高原和东北湖区的影像选择时间主要集中在每年5-10月的非冰期。研究团队利用3种实测透明度数据集进行中国湖泊透明度反演模型的构建与验证。第一种数据集是本研究团队在2004-2018年获取的野外实测数据,该数据集的3/4(976)用来建立模型(红/蓝波段比算法),精度为R2=0.79, rRMSE=61.9%;剩余的1/4(325)用来验证模型,精度为R2=0.80, rRMSE = 57.6%。另外两种数据集是用来验证透明度反演模型的时间迁移性,其中一种数据集是2007-2009年期间由中科院南京地理与湖泊研究所进行湖泊调查获取的实测数据(340),精度为R2=0.78,rRMSE = 59.1%;另一种数据集是1980s-1990s期间第一次湖泊调查结果(229),精度为R2=0.81,rRMSE = 50.6%。模型验证结果表明,透明度反演结果在时空上具有较好的精度和稳定性。最后,基于透明度反演模型,在GEE云平台上编写去云算法、水体指数算法等来实现中国湖泊透明度的反演。该数据集信息有助于决策者或者环境管理者更好改善和保护水质,维持区域的可持续发展。
陶慧, 宋开山, 刘阁, 王强, 温志丹
本数据集来源于滦河流域土壤水分遥感试验中的多频多角度地基微波辐射观测试验,试验地点位于内蒙古自治区多伦县 (42.18°N, 116.47°E),数据获取于2017年。数据集共包含三个部分,即亮温数据、土壤数据和植被数据。微波亮温数据由RPG-6CH-DP车载微波辐射计观测得到,涵盖三种农作物 (玉米、莜麦和荞麦),包括三个微波波段 (L, C和X)的水平和垂直极化亮温,观测入射角变化范围为30-65° (2.5°间隔),时间分辨率为0.5小时。土壤数据包含了三种农作物土壤的5层土壤水分和土壤温度 (2.5 cm, 10 cm, 20 cm, 30 cm, 50 cm),采样间隔为10分钟;土壤数据还包括地表粗糙度、降雨量、灌溉标记和土壤质地。植被数据包括叶面积指数、植株高度、植被含水量等。 试验观测时间从2017年7月19日持续到8月30日,其所涵盖的不同农作物的多频多角度微波亮温及土壤和植被等相关配套数据为陆表微波辐射建模与验证、土壤水分反演算法发展和验证提供了重要资料。
赵天杰, 胡路, 李尚楠, 樊东, 王平凯, 耿德源, 施建成
地表反照率是地表能量平衡的重要参量之一。本数据集为2020年植被生长季(6-10月)逐月的黑河流域典型站点无人机遥感地表反照率数据(花寨子站8月份的数据由于实验开展的技术问题缺失)。地表反照率算法为统计回归方法,即基于6S模型和大量的典型地物光谱反射率数据,建立的从窄波段反射率到宽波段反照率的经验回归模型。将该回归模型应用于无人机多光谱遥感传感器获得的地表反射率,最终得到0.2 m空间分辨率的地表反照率数据。本数据集经过了辐射定标、几何校正,与地面站点实测数据的验证结果显示,均方根误差为0.029。本数据集提供了超高分辨率的地表反照率数据,可以作为卫星遥感尺度和地面观测尺度之间的“桥梁”,并为从事高分辨率和超高分辨率遥感数据工作的科研工作者提供数据支持。
刘绍民, 周纪, 董惟琛
归一化植被指数结合了不同波段的光谱信息,在研究植被长势、地物分类方面有重要作用。本数据集为2020年6-10月的黑河流域典型站点无人机遥感NDVI(Normalized Differential Vegetation Index)数据,空间分辨率为0.2 m。NDVI数据获取流程为将无人机拍摄后的单幅影像通过Pix4D mapper进行拼接,并由Pix4D mapper自动进行拼接和影像的植被指数计算。
刘绍民, 周纪, 金子纯, 王子卫
地表温度是地表能量平衡的重要参量之一。本数据集为2020年6-10月逐月的黑河流域典型站点无人机遥感地表温度数据;飞行使用大疆M600 pro无人机搭载WIRIS Pro Sc热像仪,分别以湿地内的SD站、绿洲内的DM站和荒漠内的HZ站为中心,观测了地表温度获取了地表亮温图像,无人机的飞行高度约300m,热像仪的像素为336x256,图像的空间分辨率为0.4m。地表温度反演算法为改进的单通道算法,将该算法应用于无人机热红外遥感传感器获取的地表亮温数据,最终得到0.4m空间分辨率的地表温度数据。
刘绍民, 周纪, 王子卫
本数据为82个地震台站的1333个远震到点组成的新横波喷流数据集,分析了加拿大西部沉积盆地的地幔地震各向异性。地震各向异性对地壳和上地幔岩石的应变历史施加一阶约束。由此产生的332个高质量的测量区域平均明显分裂时间(即各向异性的大小)1.10.3s和平均速度方向(即各向异性的方向)17.2度、54.6度,支持一个两层的各向异性模型基于90度方位参数的周期性。在岩石圈深处,北东向的快速走向主导着下层,近似平行于现今的绝对板块运动(APMs;即<35度),这是由于活跃的软流层流所致。另一方面,偏离加拿大落基山山麓apm可以反映克拉通岩石圈西南向迁移的地幔流断裂。在岩石圈中还发现了两个细长的上层各向异性异常,它们与莫霍深度具有空间相关性。它们的特征表明冻结各向异性沿着两个收敛的边界:(1)将东北(北)和西北(南)两个快速方向分离的古元古代雪鸟构造带;(2)与APM、最大地应力和电磁各向异性相一致的落基山脉山麓。与科迪勒拉造山有关的挤压作用可能是山麓到克拉通内部横波各向异性空间变化的原因。
吴磊
数据包含青藏高原2020年七月份大通河流域十个典型水电站,包括:多龙水电站、沟寺口水电站、金星水电站、卡索峡水电站、连城水电站、纳子峡水电站、石头峡水电站、天王沟水电站、铁迈水电站、学科滩水电站。该航拍图片资料有助于分析大通河流域水电开发的现状。数据由本次科考小组人员通过使用大疆无人机RTK系列和御系列进行航拍,并通过大疆制图软件拼接。航拍图像数据清晰度高,可明显观察到水电站大坝类型、上下游水体面积、引水工程等以及水电站周边地形和土地利用状况。数据可应用于青藏高原水电开发相关研究领域,提供实地图片以作参考。
傅斌
青藏高原地区30米分辨率卫星遥感影像集,影像为真彩色,空间分辨率约为30米,以Geotiff格式分块存放。该产品是在Landsat地表反射率数据的基础上,通过海量影像快速自动化镶嵌和匀色等关键技术,制作青藏高原地区30米分辨率镶嵌影像,得到青藏高原地区的无云卫星遥感影像。该数据产品的几何精度为RMSD小于12m。该数据集可为青藏科考提供30m分辨率的时间序列卫星影像底图,也可用于土地覆盖类型的解译和自动提取。
龙腾飞
地表温度(Land surface temperature, LST)是地球表面与大气之间界面的重要参量之一。它既是地表与大气能量交互作用的直接体现,又对于地气过程具有复杂的反馈作用。因此,地表温度不仅是气候变化的敏感指示因子和掌握气候变化规律的重要前提,还是众多模型的直接输入参数,在许多领域有广泛的应用,如气象气候、环境生态、水文等。伴随地学及相关领域研究的深入和精细化,学术界对卫星遥感的全天候地表温度(All-weather LST)具有迫切的需求。 本数据集的制备方法是一种基于新型地表温度时间分解模型的卫星热红外遥感-再分析数据集成方法。方法的主要输入数据为Aqua MODIS LST产品和GLDAS等数据,辅助数据包括卫星遥感提供的植被指数、地表反照率等。方法充分利用了卫星热红外遥感和再分析数据提供的地表温度高频分量、低频分量以及地表温度的空间相关性,最终重建得到较高质量的全天候地表温度数据集。 评价结果表明,本数据集具有良好的图像质量和精度,不仅在空间上无缝,还与当前学术界广泛采用的逐日1 km Aqua MODIS LST产品在幅值和空间分布上具有较高的一致性。当以MODIS LST为参考时,该数据集在白天和夜间的平均偏差(MBE)为0.08K至0.16K,偏差标准差(STD)为1.12K至1.46K。基于分布于黑河流域、东北、华北和华南地区的15个站点实测数据的检验结果表明,其MBE为-0.06K至-1.17K,RMSE为1.52K至3.71K,且在晴空与非晴空条件下无显著区别。 本数据集的时间分辨率为逐日2次,空间分辨率为1km,时间跨度为2000年-2021年(注:通过外推方式将缺少Aqua MODIS LST产品时段内的全天候地表温度补齐);空间范围包括我国陆域的主要区域(包含港澳台地区,暂不包含我国南海诸岛)及周边区域(72°E-135°E,19°N-55°N)。本数据集的缩写名为TRIMS LST(Thermal and Reanalysis Integrating Moderate-resolution Spatial-seamless LST),以便用户使用。需要说明的是,TRIMS LST的空间子集TRIMS LST-TP(中国西部逐日1 km全天候地表温度数据集(TRIMS LST-TP;2000-2021)V2)同步在国家青藏高原科学数据中心发布,以减少相关用户数据下载和处理的工作量。
周纪, 张晓东, 唐文彬, 丁利荣, 马晋, 张旭
本数据集是2019年9月川藏铁路沿线典型植被无人机高光谱观测数据,使用的是大疆M600 Resonon成像系统的机载光谱仪。包括2019年在拉萨的草原区域观测的高光谱数据,自带经纬度。高光谱调查时基本为晴天。飞行前进行了白板校准;采集数据时设有靶标(即适于草地的标准反光布),用于光谱校准;设有地面标志点(即有字母的泡沫板照片),并记录了每个标志点的经纬度坐标,用于几何精确校准。无人机高光谱相机记录的dn值,可使用Spectronon Pro软件转换为反射率。高光谱数据用于提取不同植被类型光谱特征、植被分类、反演植被覆盖度等。
周广胜, 汲玉河, 吕晓敏, 宋兴阳
该数据集由2020年8月青藏高原野外考察期间无人机航拍所得,数据大小为10.1 GB,包括1500余张航片。拍摄地点主要包括拉萨、山南、日喀则等地区道路沿线、居民点及周边地区。航片主要反映了当地土地利用/覆被类型、设施农业分布、草地盖度情况等信息,航片均具有经纬度和海拔信息,可为土地利用/覆被遥感解译工作提供了较好的验证信息,还可用于植被覆盖度的估算工作,为研究区域土地利用研究提供了较好的参照信息。
吕昌河, 刘亚群
青藏高原地面光谱数据集主要是利用光谱仪测定不同土地利用类型的光谱特征,测定的地物类型主要分为林地、(高寒)灌木、(高寒)草地、湿地、耕地与裸地等。包含拉萨、林芝、日喀则、阿里、那曲部分县区的实地观测点。林地数据采集测定植被不同生长阶段的光谱特征;草地数据采集测定不同覆盖度的光谱特征;耕地测定常见作物油菜花与青稞田块的光谱特征;湿地则主要测定长流水河流旁的湿地、低洼谷地自然形成的湿地、湖泊旁的湿地等;裸地则测定无植被覆盖的荒漠、戈壁、道路等的光谱特征。观测时间为2019年7-8月,数据为日观测数据。数据集可以为遥感解译的实地验证提供参考。
冯晓明
中国地表温度数据集包含2003-2017年期间中国(约960万平方公里土地)的地表温度数据,时间分辨率为月尺度,空间分辨率为5600 m。 数据集主要是通过集成MODIS每日数据(MOD11C1和MYD11C1),月数据(MOD11C3和MYD11C3)和气象站数据,以重建月尺度LST图像云覆盖下的真实LST来生成的,然后构建回归分析模型以进一步提高精度。 六个具有不同气候条件的自然分区。 精度分析表明,重建结果与现场测量结果密切相关,平均RMSE为1.39°C,MAE为1.30°C,R2为0.97。 详情请参考引用文献Zhao et al (2020)。
毛克彪
基于青藏高原土壤温湿度观测网玛曲站点建立的地基L波段微波辐射计观测系统(ELBARA-III,由欧洲航空局提供),本数据集囊括了水平和垂直极化的L波段亮温数据,地表及以下不同层土壤湿度和温度数据,地表通量(如感热、潜热、碳通量),气象要素数据(如降水、上下行长波/短波辐射、空气温度和湿度、气压)以及植被叶面积指数LAI和土壤性质等辅助数据。此多年尺度的数据集可用于提高对陆面过程、微波辐射过程的理解,验证SMOS和SMAP卫星亮温观测和土壤湿度反演结果,校验微波辐射传输模型中的假设条件,验证陆面模式输出以及再分析资料,反演土壤物理性质,量化陆-气间的水、碳、能量交换,并将帮助定量化地球系统模型中参数化方案的偏差和不确定性,从而提出相应改进方案。 ELBARA-III双极化亮温数据可通过测量的辐射计电压和校准的内部噪声温度计算得到。该数据质量可靠,其质量控制主要通过:1)对辐射计输出的原始电压数据(以800Hz采样频率)进行直方图检验,利用统计指标过滤射频干扰对ELBARA-III微波信号数据的影响;2)检查辐射计进行天空辐射测量时两天线端口的电压值是否相似,天线电缆有无损耗;3)分析仪器内部温度、主动冷源温度和环境温度;4)分析不同入射角度的双极化亮温的特点。 - 时间分辨率:30分钟 - 空间分辨率:入射角为40°~ 70°,间隔为5°,观测覆盖范围为3.31 m^2~ 43.64 m^2 - 测量精度:亮温,1 K;土壤水分,0.001 m^3 m^-3;土壤温度,0.1 °C - 单位:亮温,K;土壤水分,m^3 m^-3;土壤温度,°C /K
Bob Su, 文军
数据集包括2015年11月27日- 2016年3月26日阿勒泰基站(lon:88.07, lon: 44.73)地面被动微波亮温、多角度亮温、10分钟四分量辐射和雪温、雪坑日观测数据和逐时气象数据。 日雪坑参数包括:积雪分层、分层厚度、密度、粒度、温度。 这些数据存储在5个NetCDF文件中,TBdata.nc, TBdata-multiangle.nc, Ten-minute 4 component radiation and snow temperature.nc, Hourly meteorological and soil data.nc and Daily snow pit data.nc,以及readme.doc。 TBdata.nc 为六通道双偏振微波辐射计RPG-6CH-DP自动采集的两偏振三个通道的亮度温度。内容包括年、月、日、时、分、秒、Tb1h、Tb1v、Tb18h、Tb18v、Tb36h、Tb36v、入射角、方位角。 TBdata-multiangle.nc为两种极化的3个通道的7组多角度亮度温度。 包括年、月、日、时、分、秒、Tb1h、Tb1v、Tb18h、Tb18v、Tb36h、Tb36v、入射角、方位角。 The ten-minute 4 component radiation and snow temperature. nc 为4组分辐射和层状雪温度。 内容包括:年、月、日、时、分、SR_DOWN、SR_UP、LR_DOWN、LR_UP、T_Sensor、ST_0cm、ST_5cm、ST_15cm、ST_25cm、ST_35cm、ST_45cm、ST_55cm。 The hourly meteorological and soil data.nc为每小时天气数据和分层土壤数据。内容包括年、月、日、时、Tair、Wair、Pair、Win、SM_10cm、SM_20cm、Tsoil_5cm、Tsoil_10cm、tsoil_15cm、Tsoil_20cm。 The daily snow pit data.nc为人工雪坑数据。观测时间为当地时间上午8:00-10:100。内容包括年、月、日、雪深、thickness_layer1、thickness_layer2、thickness_layer4、thickness_layer5、thickness_layer6、Long_layer1、Short_layer1、Long_layer2、Short_layer2、Long_layer3、Short_layer4、Long_layer5、Short_layer5、Long_layer6、short_layer6、Stube、snow shovel_0-10、 雪铲_10-20、雪铲_20-30、雪铲_30-40、雪铲_40-50、雪叉_10、雪叉_15、雪叉_20、雪叉_25、雪叉_30、雪叉_35、雪叉_40、雪叉_45、雪叉_50、形状1、形状2、形状3、形状4、形状5。
戴礼云
该数据集由2018-2019年青藏高原5次野外考察期间无人机航拍所得,数据大小为77.6 GB,包括11600余张航片。航片共分5次拍摄,拍摄时间为2018.07.19-2018.07.26、2018.09.09-2018.09.16、2019.04.24-2019.05.10、2019.07.06-2019.07.20、2019.09.01-2019.09.07。拍摄地点主要包括拉萨、日喀则、那曲、山南、林芝、昌都、迪庆、甘孜、阿坝、甘南、果洛等地区主要城市间的道路沿线及周边地区。航片较为清晰的反映了当地土地利用/覆被类型、植被分布状况、草地退化情况、植被覆盖度、河流湖泊分布等信息,航片均具有经纬度和海拔信息,可为土地利用/覆被遥感解译工作提供了较好的验证信息,还可用于植被覆盖度的估算工作,为研究区土地利用研究提供了较好的参照信息。
吕昌河, 刘亚群
青藏高原是全球气候变化的敏感区域。地表温度(Land Surface Temperature, LST)作为地表能量平衡中的主要参数,表征了地气间能量和水分交换的程度,广泛应用于气象气候、水文、生态等领域的研究中。青藏高原的陆地-大气相互作用等研究,迫切需要较长时间序列和较高时空分辨率的全天候地表温度数据集。然而,该区域较为频繁的云覆盖特征,使现有卫星热红外遥感地表温度数据集的使用受到较大的局限。 相较于2019年发布的前一个版本——中国西部逐日1km空间分辨率全天候地表温度数据集(2003-2018)V1,本数据集(V2)采用了一种新的制备方法,即基于新型地表温度时间分解模型的卫星热红外遥感-再分析数据集成方法。方法的主要输入数据为Aqua MODIS LST产品和GLDAS等数据,辅助数据包括卫星遥感提供的植被指数、地表反照率等。该方法充分利用了卫星热红外遥感和再分析数据提供的地表温度高频分量、低频分量以及地表温度的空间相关性。 评价结果表明,本数据集具有良好的图像质量和精度,不仅在空间上无缝,还与当前学术界广泛采用的逐日1 km Aqua MODIS LST产品在幅值和空间分布上具有较高的一致性。以MODIS LST为参考值时,该数据集在白天和夜间平均偏差(MBE)分别为-0.28 K和-0.29 K,偏差标准差(STD)分别为1.25 K和1.36 K。基于青藏高原和黑河流域的6个站点实测数据的检验结果表明,晴空条件下,本数据集在白天/夜间与实测LST均具有高度的一致性,其MBE为-0.42~0.25 K/-0.35~0.19 K;均方根误差 (RMSE)为1.03~2.28 K/1.05~2.05 K;非晴空条件下,本数据集在白天/夜间的MBE为-0.55~1.42 K/-0.46~1.27 K;RMSE为2.24~3.87 K/2.03~3.62 K。与V1版本的数据相比,两种全天候地表温度均在空间维度上表现除了空间无缝(即无缺失值)的特性,且在大部分区域内,两种全天候地表温度的空间分布和幅值均与MODIS地表温度高度一致。然而,在AMSR-E/AMSR2轨道间隙亮温缺失的区域内,V1版本的地表温度产生了低估。TRIMS地表温度与V1版本地表温度在AMSR-E/AMSR2轨道间隙外的质量接近,而在轨道间隙内前者的质量更加可靠。因此,建议用户使用V2版本。 本数据集的时间分辨率为逐日2次,空间分辨率为1km,时间跨度为2000年-2021年(注:通过外推方式将缺少Aqua MODIS LST产品时段内的全天候地表温度补齐)。本数据集的空间范围包括青藏高原为核心的我国西部及周边地区(72°E-104°E,20°N-45°N)。因此,本数据集的缩写名为TRIMS LST-TP(Thermal and Reanalysis Integrating Moderate-resolution Spatial-seamless LST – Tibetan Plateau),以便用户使用。
周纪, 张晓东, 唐文彬, 丁利荣, 马晋, 张旭
本数据集是2017年青藏高原冰川数据,使用了210景Landsat8 OLI卫星多光谱遥感数据,时间从2013年至2018年,90%来源于2017年,85%的Landsat8 OLI数据成像于冬季。冰川数据是青藏高原净冰川覆盖范围,不包括表碛物覆盖部分。数据格式是TIFF,可以为青藏高原冰川变化、冰川水文研究提供基础数据支持。 数据内容: Value是冰川斑块在系统中自动生成的编码。 格网单元:30m 数据的投影方式:Albers等积圆锥投影。 数据加工方法:基于210景Landsat8 OLI卫星多光谱遥感数据,校正、镶嵌为假彩色合成影像(RGB:654),采用人工目视解译方法,参考波段比值法结果,结合SRTM DEM V4.1数据与Google Earth和HJ1A/1B卫星同一年不同季节的影像,剔除了山体阴影、季节性积雪的影响,参考我国第一期和第二期冰川编目数据,剔除了非冰川区的陡崖、裸露基岩等,综合提取净冰川专题矢量数据,不包括冰川末端位置不清的表碛物覆盖区域,冰川边界数字化精度为半个像元(15m)。通过对比分析,可知基于多数据源、参考多方法结果、综合专家经验知识人-机互动方法提取获得的山地冰川数据更准确。具体数据提取方法详见参考文献: Ye, Q., J.Zong,L.Tian et al. (2017). Glacier changes on the Tibetan Plateau derived from Landsat imagery: mid-1970s – 2000 – 2013. Journal of Glaciology,63(238), 273-87. DOI:10.1017/jog.2016.137。 原始遥感资料数据精度:30m 数据质量控制措施:冰川边界数字化精度控制在半个像元之内(15m)。 项目来源:中国科学院战略性先导科技专项(A类)(XDA19070302), 第二次青藏高原综合科学考察研究资助(2019QZKK0202),国家自然科学基金项目(41530748, 91747201)、中国科学院“十三五”信息化建设专项资助(XXH13505-06)。
叶庆华
该数据集包含2014年07月23日至2014年08月18日在黑河下游混合林站和超级站观测的热像仪组分温度数据。观测地点坐标分别为101.1335E、41.9903N和101.1374E、42.0012N,海拔约874m。在混合林站和超级站分别使用Testo890-2(热红外图像:640 × 480,可见光2048 × 1536)和Testo875-2i(热红外图像:160 × 120,可见光640 × 480)热像仪,以通量塔为中心,在10m高度处,拍摄塔周围的地表亮温和可见光图像。在混合林站的观测方向为东北、东、东南、西南和西北,在超级站的观测方向为东北、东南、西南和西北。观测时间范围主要为晴空日期的10:00至16:00;各次的观测时间为整点和MODIS、Landsat 8过境时;8月4日的拍摄为配合航空飞行,观测间隔约为10min。
周纪, 李明松, 马晋
该数据集包含2014年07月22日至2016年07月19日在黑河下游混合林站和超级站观测的组分温度数据。测量地点坐标分别为101.1335E、41.9903N和101.1374E、42.0012N,海拔约874m。所使用的红外辐射计型号为SI-111,数采为CR800。混合林站使用两支传感器分别观测光照胡杨(南侧)和阴影胡杨(北侧)的组分温度。两支传感器架设高约5m,距目标约1m,水平观测。超级站使用两支传感器分别观测裸土和柽柳的组分温度。观测裸土的传感器架设高度约2m,观测天顶角约45°;观测柽柳的传感器架设高度约1m,距被测目标约0.5m,水平观测。
周纪, 李明松, 马晋
本数据集为2018年祁连山重点区域人类活动数据集,空间分辨率为2m。本数据集以祁连山重点区域矿山开采、城市扩展、耕地开发、水电建设、旅游开发为重点监测内容,通过高分辨率遥感影像,对比统计前后变化图斑。对祁连山地区地类发生变化的图斑,逐块调查核实;对判图可疑的地块,重新判读验证;对影像无法反映的地类,实地核实地类,采集相关数据,核对并修正位置。同时进一步核对2018年祁连山重点区域监测内容属性信息,统一进行图斑及其属性的录入和编辑,形成2018年祁连山地区人类活动数据集,实现祁连山地区生态治理的现势性和时效性,为祁连山重点区域人类活动监测提供数据支撑。
祁元, 张金龙, 贾永娟, 周圣明, 王宏伟
本数据集为2018年祁连山重点区域土地覆盖/利用数据,空间分辨率2m。本数据集以祁连山地区的气候、海拔、地形地貌、地表覆盖类型等资料为基础,通过高分辨率遥感影像,对地表覆被类型进行解译判读。对影像无法反映的地类,实地核实地类,采集相关数据,核对并修正土地利用类型。同时进一步核对2018年祁连山重点区域土地覆盖/利用类型及植被覆盖情况等属性信息,统一进行图斑及其属性的录入和编辑,形成2018年祁连山地区土地覆盖/利用数据,实现祁连山地区生态治理的现势性和时效性。
祁元, 张金龙, 颜长珍, 段翰晨, 贾永娟
该数据集由2018年青藏高原野外考察期间无人机航拍所得,数据大小为5.72 GB,包括800余张照片。照片拍摄的具体时间为2018.07.19-2018.07.26,拍摄地点主要包括羊八井、克日村、阿沛新村、仲果村、米林村、日村、冲康村、克松村、色木村、羊卓雍错及其周边地区。航拍照片较为清晰的反映了当地土地覆被状况(土地利用类型、植被密度、河流湖泊分布等等),为土地利用遥感解译工作提供了较好的验证信息,还可用于植被覆盖度的估算工作,为研究区土地利用研究提供了较好的参照信息。
吕昌河, 刘亚群
ASTER Global Digital Elevation Model (ASTER GDEM)是美国航空航天局 (NASA)和日本经济产业省(METI)联合发布的全球数字高程数据产品,该DEM数据是根据NASA新一代对地观测卫星TERRA的观测结果完成,是由ASTER(Advanced Space borne Thermal Emission and Reflection Radio meter)传感器搜集的130万个立体像对数据制作,其覆盖范围超过了地球99%陆地表面。本数据下载自ASTER GDEM数据分发网站,为了便于用户使用数据,在分幅ASTER GDEM数据的基础上,我们使用erdas软件进行拼接制备青藏高原ASTER GDEM镶嵌图。 ASTER GDEM发布了两个版本,第一个版本于2009年6月发布,第二个版本于2011年10月发布,本数据集为青藏高原地区第二版本的ASTER GDEM数据集。 本数据集共包括三个数据文件: ASTER_GDEM_TILES ASTERGDEM_MOSAIC_DEM ASTERGDEM_MOSAIC_NUM 青藏高原地区ASTER GDEM数据,精度30米,原始数据为tif格式,镶嵌数据使用img格式存储。 本数据集原始数据下载于ASTERGDEM网站,完全保留了数据的原貌,ASTER GDEM在分发时被分割为若干1×1度的数据块,分发格式为zip压缩格式,每个压缩包包括两个文件,文件命名格式如下: ASTGTM_NxxEyyy_dem.tif ASTGTM_NxxEyyy_num.tif 其中xx为起始纬度,yyy为起始经度。_dem.tif为dem数据文件,_num.tif为数据质量文件。 ASTER GDEM TILES:原始数据保留数据原貌,未进行处理 ASTERGDEM_MOSAIC_DEM:使用erdas软件对dem.tif数据进行镶嵌,参数设置使用默认值 ASRERGDEM_MOSAIC_NUM:使用erdas软件对num.tif数据进行镶嵌,参数设置使用默认值 原始数据保留数据原貌,精度同ASTERGDEM数据分发网站的数据精度,该数据的水平精度30米,高程精度为20米。镶嵌数据使用erdas制作,参数使用默认值。
METI, NASA
该数据集是NOAA的 Advanced Very High Resolution Radiometer (AVHRR)传感器获取的长时间序列的NDVI数据。该数据集时间范围是1982年至2015年。为了去除NDVI数据中的噪声,进行了最大化合成、多传感器对比纠正。每半个月合成一幅NDVI影像。该数据集在植被长期变化趋势分析中被广泛应用。该数据集是从全球数据集中将三江源部分裁切出来,以便单独开展三江源地区的研究分析。 本数据集数据格式为geotiff,空间分辨率为8km,时间分辨率为2周,时间范围为1982年至2015年。数据转系系数为10000, NDVI = ND/10000。
NOAA
该数据集是MODIS的植被指数数据(MOD13Q1),将三江源区域进行了提取,以便单独开展三江源地区的研究分析。MOD13Q1是16天合成的植被指数,包含归一化植被指数(NDVI)和增强型植被指数(EVI)。三江源的空间范围覆盖两景MODIS文件(h25v05和h26v05)。数据存储格式为hdf,每个文件中包含12个波段:归一化植被指数(NDVI)、增强型植被指数(EVI)、数据质量(VI Quality)、红波段反射率(red reflectance)、近红外波段反射率(NIR reflectance)、蓝波段反射率(blue reflectance)、中红外波段反射率(MIR reflectance)、观测天顶角(view zenith angle)、太阳天顶角(sun zenith angle)、相对方位角(relative azimuth angle)、合成的时间(composite day of the year)和象元可靠性(pixel reliability). 本数据集数据格式为hdf,空间分辨率250m,时间分辨率是16天,时间范围:2000年2月至2018年10月。
Kamel Didan*, Armando Barreto Munoz, Ramon Solano, Alfredo Huete
该数据集是SPOT卫星上的VEGETATION传感器获取的长时间序列的NDVI数据。该数据集时间范围是1998年5月至2013年。为了去除NDVI数据中的噪声,进行了最大化合成。每10天合成一幅NDVI影像。该数据集是从全球数据集中将三江源部分裁切出来,以便单独开展三江源地区的研究分析。 本数据集数据格式为geotiff,空间分辨率1km,时间分辨率是10天,时间范围:1998年5月至2013年12月。
Image Processing Centre for SPOT-VGT
2012年8月1日在黑河上游,利用运12飞机,搭载WIDAS传感器,开展了可见光/近红外、热红外的多角度航空遥感试验。WIDAS系统集成了:高分辨率相机一台、可见光/近红外5波段多光谱相机两台(最大视场角48度)和热像仪一台(最大视场角46度)。获取的数据信息为:CCD分辨率0.1m.
肖青, 闻建光
2018年8月19日在位于长江源区的曲麻莱县的湿地样方采用DJI 精灵4 无人机搭载的照相机,对样方区域进行航拍,共设置了31条航线,飞行高度100m,相邻照片重叠度不低于70%,总共获取了1551张航拍照片,分别存储在“Drone Photoes Part1”和“Drone Photoes Part2”两个文件夹下。
王旭峰, 魏彦强, 王旭峰
2012年8月3日在黑河中游的5*5公里加密区,利用运12飞机,搭载WIDAS传感器,开展了可见光/近红外、热红外的多角度航空遥感试验。WIDAS系统集成了:高分辨率相机一台、可见光/近红外5波段多光谱相机两台(最大视场角48度)和热像仪一台(最大视场角46度)。获取的数据信息为:CCD分辨率0.1m.
肖青, 闻建光
2012年7月26日在黑河中游的5*5公里加密区,利用运12飞机,搭载WIDAS传感器,开展了可见光/近红外、热红外的多角度航空遥感试验。WIDAS系统集成了:高分辨率相机一台、可见光/近红外5波段多光谱相机两台(最大视场角48度)和热像仪一台(最大视场角46度)。获取的数据信息为:CCD分辨率0.2m.
肖青, 闻建光
2018年8月22日在位于澜沧江源园区的样方采用DJI 精灵4 无人机搭载的照相机,对样方区域进行航拍,共设置了20条航线(5条航线数据缺失),飞行高度100m,相邻照片重叠度不低于70%,总共获取了1160张航拍照片,存储在“100MEDIA”,“101MEDIA”两个个文件夹下。
王旭峰, 魏彦强
2012年8月25日和8月28日,在黑河中上游的核心观测区域,利用运12飞机,搭载Leica公司RCD30相机,开展了光学航空遥感飞行试验。RCD30相机焦距80mm,有RGB和近红外四个波段。上游葫芦沟飞行区域,绝对航高为4800和5500米,GSD为6—19厘米。经过处理,得到tif影像及影像外方位元素。
肖青, 闻建光
2012年8月19日,在黑河中上游的核心观测区域,利用运12飞机,搭载Leica公司RCD30相机,开展了光学航空遥感飞行试验。RCD30相机焦距80mm,有RGB和近红外四个波段。小沙漠地区飞行绝对航高2900米,GSD为10厘米。经过处理,得到tif影像及影像外方位元素。
肖青, 闻建光
该数据集是SeaWiFS获取的长时间序列的NDVI数据。该数据集时间范围是1997年9月至2007年。为了去除NDVI数据中的噪声,进行了最大化合成。每15天合成一幅NDVI影像。该数据集是从全球数据集中将三江源部分裁切出来,以便单独开展三江源地区的研究分析。 本数据集数据格式为geotiff,空间分辨率4km,时间分辨率是15天,时间范围:1997年第256天至2007年第365天。
Charles R. Mcclain
2018年8月19日在长江源园区曲麻莱县的高寒草甸样方采用DJI无人机进行航拍,按照设定的飞行路线拍摄照片,相邻照片重叠度不低于70%,利用拍摄的照片生成正射影像和DSM,正射影像包含红绿蓝三个波段,正射影像地面分辨率为2.5cm,拍摄面积为860m×770m,DSM的分辨率为4.5cm。
王旭峰, 魏彦强
2018年8月19日在长江源园区曲麻莱县的湿地样方采用DJI无人机进行航拍,按照设定的飞行路线拍摄照片,相邻照片重叠度不低于70%,利用拍摄的照片生成正射影像和DSM,正射影像包含红绿蓝三个波段,地面分辨率为2cm,拍摄面积为850m×1000m,DSM的分辨率为4.5cm。
王旭峰, 魏彦强
2018年8月20日在位于长江源区的曲麻莱县的高寒草甸样方采用DJI 精灵4 无人机搭载的照相机,对样方区域进行航拍,共设置了31条航线,飞行高度100m,相邻照片重叠度不低于70%,总共获取了664张航拍照片,存储在Drone photoes of Qumalai(2018)文件夹下。
王旭峰, 魏彦强
2012年8月2日在黑河中游的30*30公里核心观测区域,利用运12飞机,搭载WIDAS传感器,开展了可见光/近红外、热红外的多角度航空遥感试验。WIDAS系统集成了:高分辨率相机一台、可见光/近红外5波段多光谱相机两台(最大视场角48度)和热像仪一台(最大视场角46度)。获取的数据信息为:CCD分辨率0.26m.
肖青, 闻建光
2012年8月25日,在黑河中上游的核心观测区域,利用运12飞机,搭载Leica公司RCD30相机,开展了光学航空遥感飞行试验。RCD30相机焦距80mm,有RGB和近红外四个波段。样带地区飞行绝对航高5200米,GSD为6—19厘米。经过处理,得到tif影像及影像外方位元素。
肖青, 闻建光
2012年8月25日,在黑河中上游的核心观测区域,利用运12飞机,搭载Leica公司RCD30相机,开展了光学航空遥感飞行试验。RCD30相机焦距80mm,有RGB和近红外四个波段。上游天姥池飞行区域,绝对航高为4800和5500米,GSD为8—19厘米。经过处理,得到tif影像及影像外方位元素。
肖青, 闻建光
2018年8月22日在位于澜沧江源区的固定样方采用DJI无人机搭载的照相机,按照设定的飞行路线拍摄照片,相邻照片重叠度不低于70%,利用拍摄的照片生成正射影像和DSM,正射影像包含红绿蓝三个波段,地面分辨率为2.5cm,拍摄面积为1000m×1000m,DSM的分辨率为4.5cm。由于通信故障,导致中间4条航带没有拍摄上照片,所以中间有一个条带的影像缺失。
王旭峰, 王旭峰, 魏彦强, 王旭峰
Greenland遥感影像拼接图是在收集了2014-2015年间108景Landsat8 OLI遥感影像,经过DN值校正、去云计算、行星反射率计算、反射率与RGB值转换、影像合成与拼接等操作后制成。全图空间分辨率为30m,投影方式采用极射赤面投影。
陈卓奇
该数据集是基于MODIS 16天合成的NDVI产品(MOD13A2 collection6)估算的三江源地区的植被生长季开始(Start of Season: SOS)和生长季结束的日期(End of Season: EOS)。分别用了两种常见的物候期估算方法,分别是基于多项式拟合的阈值提取法(文件名中有poly字符)和基于双逻辑曲线(double logistic function)拟合后的拐点提取法(文件名中有sig字符)。该数据可以用来分析植被物候期与气候变化的关系。时间范围为2001年至2014年。空间分辨率为1km。
王旭峰
该数据集包含了黄河源、长江源、澜沧江三个源区的最大值合成法生产的NPP产品数据。MOD13Q1、MOD17A2以及MOD17A2H遥感产品数据来自于NASA网站(http://modis.gsfc.nasa.gov/)。MOD13Q1产品的分辨率为250 m, 16 d合成产品。MOD17A2和MOD17A2H产品数据都是8 d合成产品, MOD17A2的分辨率为 1000 m, MOD17A2H的分辨率为500 m。最终合成的MODIS NPP产品的分辨率为1km。 下载的MOD13Q1、MOD17A2、MOD17A2H遥感数据产品, 格式为HDF, 该数据已经过大气校正、辐射校正、几何校正和去云等处理。1)MRT投影转换。将下载的数据产品进行格式和投影转换, 将HDF格式转换为TIFF格式, 将投影转换为UTM投影, 输出250 m分辨率的NDVI、250 m分辨率的EVI、1000 m和500 m两种分辨率的净光合PSNnet。2)MVC最大值合成。将与地面实测数据同期的NDVI、EVI、PSNnet采用最大值合成, 得到与实测数据对应的值。采用最大值合成法可以有效减少云、大气、太阳高度角等的影响。3)基于NASA-CASA模型生成NPP年值。
Kamel Didan*, Armando Barreto Munoz, Ramon Solano, Alfredo Huete
联系方式
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved
| 京公网安备11010502040845号
数据中心技术支持: 数云软件