我们提出利用U-net网络进行冰裂隙识别探测的算法,可以实现格陵兰冰盖典型冰川冰裂隙的自动化探测。基于Sentinel-1 IW每年7、8月的数据,为了抑制SAR图像的相干斑噪声,选择Probabilistic Patch-Based Weights (PPB)算法进行滤波,然后选择具有代表性的样本输入U-net网络进行模型训练,根据训练的模型进行冰裂隙的预测。以格陵兰2个典型冰川(Jakobshavn、Kangerdlussuaq)为例分类结果的平均准确率可达94.5%,其中裂隙区域的局部准确率可达78.6%,召回率为89.4%。
李新武, 梁爽, 杨博锦, 赵京京
我们提出利用U-net网络进行冰裂隙识别探测的算法,可以实现南极冰裂隙的自动化探测。基于Sentinel-1 EW 1月、2月的数据,为了抑制SAR图像的相干斑噪声,选择Probabilistic Patch-Based Weights(PPB)算法进行滤波,然后选择具有代表性的样本输入U-net网络进行模型训练,根据训练的模型进行冰裂隙的预测。以南极5个典型冰架(Amery、Fimbul、Nickerson、Shackleton、Thwaiters)为例分类结果的平均准确率可达94.5%,其中裂隙区域的局部准确率可达78.6%,召回率为89.4%。
李新武, 梁爽, 杨博锦, 赵京京
太阳总辐射和散射采用辐射表(CM22, Kipp & Zonen, 荷兰)测量,波长范围200-3600 nm。温湿度数据来源于IPEV/PNRA 项目 “Routine Meteorological Observation at Station Concordia” ,http://www.climantartide.it,地面水汽压单位为hPa。本数据集包括:利用经验模型计算的地面太阳总辐射、损失于大气中的吸收和散射辐射(小时累计值,单位MJ/m2)、大气顶和地表反照率;还包括散射因子(S/G)地面水汽压(E,单位hPa)。太阳辐射数据来源于数据提供者的计算、实验站测量,数据覆盖时间为2006-2016年(Bai, J.; Zong, X.; Lanconelli, C.; Lupi, A.; Driemel, A.; Vitale, V.; Li, K.; Song, T. 2022. Long-Term Variations of Global Solar Radiation and Its Potential Effects at Dome C (Antarctica). Int. J. Environ. Res. Public Health, 19, 3084. https://doi.org/10.3390/ijerph19053084)。该数据集可以用于南极Dome C地区太阳辐射及其衰减等相关研究。地面太阳辐射和其他气象数据可以参考:https://doi.org/10.1594/PANGAEA.935421
白建辉
太阳总辐射采用辐射表(CM21, Kipp & Zonen, 荷兰)测量,波长范围200-3600 nm。温湿度分别采用温湿度传感器HMP45C-GM (Vaisala Inc., Vantaa, Finland)测量。本数据集包括:利用经验模型计算的地面太阳总辐射、损失于大气中的吸收和散射辐射(小时累计值,单位MJ/m2)、大气顶和地表反照率;还包括散射因子(AF)地面水汽压(E,单位hPa)。太阳辐射数据来源于数据提供者的计算、实验站测量,数据覆盖时间为2007-2020年。关于数据处理和太阳总辐射计算等可参考文献:Bai, J.; Zong, X.; Ma, Y.; Wang, B.; Zhao, C.; Yang, Y.; Guang, J.; Cong, Z.; Li, K.; Song, T. 2022. Long-Term Variations in Global Solar Radiation and Its Interaction with Atmospheric Substances at Qomolangma. Int. J. Environ. Res. Public Health, 19, 8906. https://doi.org/10.3390/ijerph19158906。该数据集可以用于珠峰地区太阳辐射及其衰减等相关研究。珠峰站太阳辐射和其他气象数据可以参考:https://data.tpdc.ac.cn/zh-hans/data/b9ab35b2-81fb-4330-925f-4d9860ac47c3/。
白建辉
中国2000-2020年逐日积雪反照率产品数据集地理空间范围为72 - 142E,16 - 56N,采用等经纬度投影,空间分辨率0.005°。数据集时间范围覆盖2000年1月1日至2020年12月31日,时间分辨率为1天。数据包含6个要素:黑空反照率(Black_Sky_Albedo)、白空反照率(White_Sky_Albedo)、太阳天顶角(Solar_Zenith_Angle)、云标识(Cloud_Mask)、林区校正标识(Forest_Mask)和反演情况标识(Abnormal_Mask)。黑空反照率要素记录了反演得到的黑空反照率,计算因子为0.0001,数据范围为0-10000。白空反照率要素记录了反演得到的白空反照率,计算因子为0.0001,数据范围为0-10000。太阳天顶角要素记录了太阳天顶角度,计算因子为0.01,数据范围为0-9000。云标识要素记录了像元是否为云,值为0表示非云,值为1表示为云。林区校正标识要素记录了像元是否作为森林类型像元被校正过,值为0表示未校正,值为1表示已校正。反演情况标识要素记录了像元所对应的黑空反照率及白空反照率的反演结果是否为小于0或大于10000的异常值,值为0表示非异常值,值为1表示为异常值。数据集基于MODIS地表反射率产品MOD09GA,积雪产品MOD10A1/MYD10A1和全球数字高程模型SRTM数据,在ART模型基础上发展了积雪反照率反演模型,并利用GEE和本地端交互生产而来。为了评估ChinaSA的反演质量,利用地面台站的观测数据提出了样方观测验证方法,验证了积雪反照率产品的精度,并与常用的四种反照率产品(GLASS、GlobAlbedo、MCD43A3和SAD)进行了精度对比。验证结果表明,ChinaSA在所有验证中精度都优于其他产品,均方根误差小于0.12,在森林区域的均方根误差能达到0.021。
肖鹏峰, 胡瑞, 张正, 秦棽
本数据是研究团队综合利用Sentinel-1 SAR数据,AMSR-2微波辐射计数据以及MODIS LST产品所生产的青藏工程走廊区域高分辨土壤冻融数据集。基于新提出的算法,本产品提供月尺度100m空间分辨土壤冻融状态检测结果,并通过气象站点和土壤温度站点进行精度验证。基于青藏工程走廊地区的4个气象站点进行精度验证,结果表明基于升轨和降轨Sentinel-1的土壤冻融检测结果的整体准确率分别为84.63%和77.09%。基于那曲土壤湿度/温度监测站点进行精度验证,升轨和降轨结果的平均整体精度为78.58%和76.66。该产品弥补了传统土壤冻融产品空间分辨率不足(>1km)的问题,为青藏工程走廊区域高分辨率土壤冻融监测提供了可能。
周欣, 刘修国, 周俊雄, 张正加, 陈启浩, 解清华
沱沱河源区植被类型图是基于 319 个地面采样点数据结合随机森林(RF)分类方法进行创建的。随机森林分类器的16个输入变量包括了Landsat-8的可见光、短波红外和热红外波段值及其反演的植被指数和地表温度数据等。根据研究区的植被特征及多年冻土模拟的需要,该图对高寒沼泽草甸(alpine swamp meadow)、高寒草甸(alpine meadow)、高寒草原(alpine steppe)和高寒沙漠(alpine desert )等4种植被类型进行了分类。图件的空间分辨率为30 m,可以提供更细节的植被类型的位置信息。
邹德富, 赵林, 刘广岳, 杜二计, 胡国杰, 李智斌, 吴通华, 吴晓东, 陈杰
冰盖表面融化是影响格陵兰冰盖物质平衡的主要原因,同时冰雪的反射率较高,冰盖表面融化会造成辐射能量收支差异,进而影响海-陆-气之间能量交换。高分辨率冰盖表面融化产品的生成,对研究格陵兰冰盖表面融化及其对全球气候变化的响应提供重要信息支撑。本数据集基于微波辐射计与光学反照率产品,对微波辐射计当日、冬季(12-次年2月)平均和1月平均进行波段合成,利用Gram-Schmidt方法将微波辐射计波段合成数据与MODIS GLASS反照率产品融合,使其空间分辨率从25 km提高至0.05˚。然后基于微波辐射计当日与冬季亮温差值的阈值法对降尺度结果提取格陵兰冰盖表面融化,得到1985年、2000年、2015年格陵兰冰盖表面0.05˚ 每日融化产品。该数据集0.05˚ 的空间分辨率高于目前国内外已发布数据集,凸显了辐射计和反照率数据对表面融化的响应,空间细节特征更加清晰,保持了原辐射计产品的动态范围,有效地抑制了辐射计噪声。该数据集的数据类型为整型,其中1代表融化,0代表未融化,255代表冰盖以外掩膜区域,数据集以“*.nc”格式存储。
魏思怡, 刘岩
冰雪具有高反射率,冰盖表面融化会降低地表反照率进而影响区域能量平衡,表面融化形成的水文系统会影响冰盖稳定性进而影响冰盖物质平衡。本数据集基于微波辐射计与光学反照率产品,对微波辐射计当日、冬季(6-8月)平均和7月平均进行波段合成,利用Gram-Schmidt方法将微波辐射计波段合成数据与MODIS GLASS反照率产品融合,使其空间分辨率从25 km提高至0.05˚。然后基于微波辐射计当日与冬季亮温差值的阈值法对降尺度结果提取南极冰盖表面融化,得到1985-1986年、2000-2001年、2015-2016年南极冰盖表面0.05˚ 每日融化产品。该数据集0.05˚ 的空间分辨率高于目前国内外已发布数据集,凸显了辐射计和反照率数据对表面融化的响应,空间细节特征更加清晰,保持了原辐射计产品的动态范围,有效地抑制了辐射计噪声,更好的反映了山区、触地线区域和冰架的融化范围随时间的梯度演变特征,产品精度更高。该数据集的数据类型为整型,其中1代表融化,0代表未融化,255代表冰盖以外掩膜区域,数据集以“*.nc”格式存储。
魏思怡, 刘岩
在国家重点研发计划“冰冻圈和极地环境变化关键参数观测与反演”第一课题“冰冻圈关键参数多尺度观测与数据产品研制“的资助下,中国科学院青藏高原研究所张寅生课题组发展了青藏高原地区降尺度雪深产品。青藏高原积雪深度降尺度数据集来源于积雪概率数据和中国雪深长时间序列数据集的融合结果,采用新发展的亚像元时空分解算法对原始0.25度的积雪深度数据进行时空降尺度,得到0.05度逐日积雪深度产品。通过降尺度前后的雪深产品精度评估的对比,发现降尺度后雪深产品的均方根误差由原产品的2.15 cm减少到了1.54 cm。 青藏高原积雪深度降尺度数据集(2000-2018)的产品信息细节如下。投影为经纬度,空间分辨率0.05 度(约5公里),时间范围为2000年9月1日-2018年9月1日,为Tif格式文件,命名规则为:SD_YYYYDDD.tif,其中YYYY代表年,ddd代表儒略日(001-365)。积雪深度(SD),单位:厘米(cm)。空间分辨率为0.05度。时间分辨率为逐日。
闫大江, 马宁, 张寅生
基于青藏高原土壤温湿度观测网玛曲站点建立的地基L波段微波辐射计观测系统(ELBARA-III,由欧洲航空局提供),本数据集囊括了水平和垂直极化的L波段亮温数据,地表及以下不同层土壤湿度和温度数据,地表通量(如感热、潜热、碳通量),气象要素数据(如降水、上下行长波/短波辐射、空气温度和湿度、气压)以及植被叶面积指数LAI和土壤性质等辅助数据。此多年尺度的数据集可用于提高对陆面过程、微波辐射过程的理解,验证SMOS和SMAP卫星亮温观测和土壤湿度反演结果,校验微波辐射传输模型中的假设条件,验证陆面模式输出以及再分析资料,反演土壤物理性质,量化陆-气间的水、碳、能量交换,并将帮助定量化地球系统模型中参数化方案的偏差和不确定性,从而提出相应改进方案。 ELBARA-III双极化亮温数据可通过测量的辐射计电压和校准的内部噪声温度计算得到。该数据质量可靠,其质量控制主要通过:1)对辐射计输出的原始电压数据(以800Hz采样频率)进行直方图检验,利用统计指标过滤射频干扰对ELBARA-III微波信号数据的影响;2)检查辐射计进行天空辐射测量时两天线端口的电压值是否相似,天线电缆有无损耗;3)分析仪器内部温度、主动冷源温度和环境温度;4)分析不同入射角度的双极化亮温的特点。 - 时间分辨率:30分钟 - 空间分辨率:入射角为40°~ 70°,间隔为5°,观测覆盖范围为3.31 m^2~ 43.64 m^2 - 测量精度:亮温,1 K;土壤水分,0.001 m^3 m^-3;土壤温度,0.1 °C - 单位:亮温,K;土壤水分,m^3 m^-3;土壤温度,°C /K
Bob Su, 文军
数据集包括2015年11月27日- 2016年3月26日阿勒泰基站(lon:88.07, lon: 44.73)地面被动微波亮温、多角度亮温、10分钟四分量辐射和雪温、雪坑日观测数据和逐时气象数据。 日雪坑参数包括:积雪分层、分层厚度、密度、粒度、温度。 这些数据存储在5个NetCDF文件中,TBdata.nc, TBdata-multiangle.nc, Ten-minute 4 component radiation and snow temperature.nc, Hourly meteorological and soil data.nc and Daily snow pit data.nc,以及readme.doc。 TBdata.nc 为六通道双偏振微波辐射计RPG-6CH-DP自动采集的两偏振三个通道的亮度温度。内容包括年、月、日、时、分、秒、Tb1h、Tb1v、Tb18h、Tb18v、Tb36h、Tb36v、入射角、方位角。 TBdata-multiangle.nc为两种极化的3个通道的7组多角度亮度温度。 包括年、月、日、时、分、秒、Tb1h、Tb1v、Tb18h、Tb18v、Tb36h、Tb36v、入射角、方位角。 The ten-minute 4 component radiation and snow temperature. nc 为4组分辐射和层状雪温度。 内容包括:年、月、日、时、分、SR_DOWN、SR_UP、LR_DOWN、LR_UP、T_Sensor、ST_0cm、ST_5cm、ST_15cm、ST_25cm、ST_35cm、ST_45cm、ST_55cm。 The hourly meteorological and soil data.nc为每小时天气数据和分层土壤数据。内容包括年、月、日、时、Tair、Wair、Pair、Win、SM_10cm、SM_20cm、Tsoil_5cm、Tsoil_10cm、tsoil_15cm、Tsoil_20cm。 The daily snow pit data.nc为人工雪坑数据。观测时间为当地时间上午8:00-10:100。内容包括年、月、日、雪深、thickness_layer1、thickness_layer2、thickness_layer4、thickness_layer5、thickness_layer6、Long_layer1、Short_layer1、Long_layer2、Short_layer2、Long_layer3、Short_layer4、Long_layer5、Short_layer5、Long_layer6、short_layer6、Stube、snow shovel_0-10、 雪铲_10-20、雪铲_20-30、雪铲_30-40、雪铲_40-50、雪叉_10、雪叉_15、雪叉_20、雪叉_25、雪叉_30、雪叉_35、雪叉_40、雪叉_45、雪叉_50、形状1、形状2、形状3、形状4、形状5。
戴礼云
本数据集是2017年青藏高原冰川数据,使用了210景Landsat8 OLI卫星多光谱遥感数据,时间从2013年至2018年,90%来源于2017年,85%的Landsat8 OLI数据成像于冬季。冰川数据是青藏高原净冰川覆盖范围,不包括表碛物覆盖部分。数据格式是TIFF,可以为青藏高原冰川变化、冰川水文研究提供基础数据支持。 数据内容: Value是冰川斑块在系统中自动生成的编码。 格网单元:30m 数据的投影方式:Albers等积圆锥投影。 数据加工方法:基于210景Landsat8 OLI卫星多光谱遥感数据,校正、镶嵌为假彩色合成影像(RGB:654),采用人工目视解译方法,参考波段比值法结果,结合SRTM DEM V4.1数据与Google Earth和HJ1A/1B卫星同一年不同季节的影像,剔除了山体阴影、季节性积雪的影响,参考我国第一期和第二期冰川编目数据,剔除了非冰川区的陡崖、裸露基岩等,综合提取净冰川专题矢量数据,不包括冰川末端位置不清的表碛物覆盖区域,冰川边界数字化精度为半个像元(15m)。通过对比分析,可知基于多数据源、参考多方法结果、综合专家经验知识人-机互动方法提取获得的山地冰川数据更准确。具体数据提取方法详见参考文献: Ye, Q., J.Zong,L.Tian et al. (2017). Glacier changes on the Tibetan Plateau derived from Landsat imagery: mid-1970s – 2000 – 2013. Journal of Glaciology,63(238), 273-87. DOI:10.1017/jog.2016.137。 原始遥感资料数据精度:30m 数据质量控制措施:冰川边界数字化精度控制在半个像元之内(15m)。 项目来源:中国科学院战略性先导科技专项(A类)(XDA19070302), 第二次青藏高原综合科学考察研究资助(2019QZKK0202),国家自然科学基金项目(41530748, 91747201)、中国科学院“十三五”信息化建设专项资助(XXH13505-06)。
叶庆华
本数据集为基于Landsat卫星影像获取的喜马拉雅中段波曲流域1976、1991、2000、2010年四期冰川、冰湖的矢量数据。 数据源来自Landsat遥感影像 1976:LM21510411975306AAA05、LM21510401976355AAA04 1991:LT41410401991334XXX02、LT41410411991334XXX02 2000:LE71410402000279SGS00、LE71400412000304SGS00、LE71410402000327EDC00、LE71410412000327EDC00 2010:LT51400412009288KHC00、LT51410402009295KHC00、LT51410412009311KHC00、LT51410402011237KHC00。 从各期遥感影像上人工提取冰川、冰湖边界。 冰川、冰湖边界提取误差估计为0.5个像元。 数据文件: Glacial_1976:1976年冰川矢量数据 Glacial_1991:1991年冰川矢量数据 Glacial_2000:2000年冰川矢量数据 Glacial_2010:2010年冰川矢量数据 Glacial_Lake_1976:1976年冰湖矢量数据 Glacial_Lake_1991:1991年冰湖矢量数据 Glacial_Lake_2000:2000年冰湖矢量数据 Glacial_Lake_2010:2010年冰湖矢量数据 冰湖矢量数据字段包括: 编号、名字、经纬度、海拔、面积、朝向、冰湖类型、长度、宽度、与冰川的距离
王伟财
本数据集是2013年青藏高原冰川数据,使用了148景Landsat8 OLI卫星多光谱遥感数据,结合65景HJ1A/1B遥感数据,时间主要从2012年至2014年,86%来源于2013年,78%Landsat8 OLI数据成像于冬季,而HJ1A/1B数据100%成像于冬季。冰川数据是青藏高原净冰川覆盖范围,不包括表碛物覆盖部分。数据格式是TIFF,可以为青藏高原冰川变化、冰川水文研究提供基础数据支持。 数据内容:冰川编号FID_smglac,基于Albers等积圆锥投影计算的冰川面积area_km2,所在流域在我国冰川编目中冰川流域的二级编码code, 所在流域在我国冰川编目中冰川流域一级编码First_code,所在流域中文名称name,所在流域英文名称Ename,冰川斑块周长Peremeter(km),斑块中心点X坐标(decimal degree), 斑块中心点Y坐标(decimal degree)。 数据的投影方式:Albers等积圆锥投影。 格网单元:30m 数据加工方法:基于148景Landsat8 OLI卫星多光谱遥感数据,校正、镶嵌为假彩色合成影像(RGB:654),采用人工目视解译方法,参考波段比值法结果,结合SRTM DEM V4.1数据与Google Earth和HJ1A/1B卫星同一年不同季节的影像,剔除了山体阴影、季节性积雪的影响,参考我国第一期和第二期冰川编目数据,剔除了非冰川区的陡崖、裸露基岩等,综合提取净冰川专题矢量数据,不包括冰川末端位置不清的表碛物覆盖区域,冰川边界数字化精度为半个像元(15m)。通过对比分析,可知基于多数据源、参考多方法结果、综合专家经验知识人-机互动方法提取获得的山地冰川数据更准确。具体数据提取方法详见参考文献: Ye, Q., J.Zong,L.Tian et al. (2017). Glacier changes on the Tibetan Plateau derived from Landsat imagery: mid-1970s – 2000 – 2013. Journal of Glaciology,63(238), 273-87. DOI:10.1017/jog.2016.137 原始遥感资料数据精度:30m。 数据质量控制措施:冰川边界数字化精度控制在半个像元之内(15m)。 加工后数据精度:TPG2013总体数据误差在3.9%。 项目来源:中国科学院战略性先导科技专项(A类)(XDA19070302), 第二次青藏高原综合科学考察研究资助(2019QZKK0202),中国科学院“十三五”信息化建设专项资助(XXH13505-06),国家自然科学基金项目(41530748, 91747201),科技基础性工作专项项目(2013FY111400)。
叶庆华
本数据集是1976年青藏高原冰川数据,使用了205景Landsat MSS/TM卫星多光谱遥感数据,其中189景(覆盖青藏高原研究区92%)在1972-79年,而116景为1976/77年。但藏东南地区由于云、雪的影响,高质量MSS数据不能获得,因此,藏东南部分区域通过逐年筛选,使用了所能获得最早的高质量Landsat TM数据,包括14景1980s(1981,1986-89,覆盖青藏高原研究区6.5%)和2景1994年数据(覆盖青藏高原研究区1.5%)。所用遥感数据,77%为冬季数据;61%为1976/1977年Landsat MSS/TM影像数据,因此,1976年为本数据集代表年份。本数据集冰川数据是青藏高原净冰川覆盖范围,不包括表碛覆盖部分。数据格式是TIFF,可以为青藏高原冰川变化、冰川水文研究提供基础数据支持。 数据内容:冰川编号FID_smglac,基于Albers等积圆锥投影计算的冰川面积area_km2,所在流域在我国冰川编目中冰川流域的二级编码code, 所在流域在我国冰川编目中冰川流域一级编码First_code,所在流域中文名称name,所在流域英文名称Ename,冰川斑块周长Peremeter(km),斑块中心点X坐标(decimal degree), 斑块中心点Y坐标(decimal degree)。 数据的投影方式:Albers等积圆锥投影。 格网单元:30m 数据加工方法:基于205/16景Landsat MSS/TM卫星数据,校正、镶嵌为假彩色合成影像(MSS, RGB:321;TM, RGB:543),采用人工目视解译方法,参考不同波段比值法结果,结合SRTM DEM V4.1数据与Google Earth 同一年不同季节的影像,剔除了山体阴影、季节性积雪的影响,参考我国第一期和第二期冰川编目数据,剔除了非冰川区陡崖、裸露基岩等,综合提取净冰川专题矢量数据,不包括冰川末端位置不清的表碛物覆盖区域,冰川边界数字化精度为半个像元(30m)。通过对比分析,可知基于多数据源、参考多方法结果、综合专家经验知识人-机互动方法获得的数据更准确。具体数据提取方法详见参考文献: Ye, Q., J.Zong,L.Tian et al. (2017). Glacier changes on the Tibetan Plateau derived from Landsat imagery: mid-1970s – 2000 – 2013. Journal of Glaciology,63(238), 273-87. DOI:10.1017/jog.2016.137 原始遥感资料数据精度:60m。 数据质量控制措施:冰川边界数字化精度控制在半个像元之内(30m)。 加工后数据精度:通过分析典型区数据,最大误差为4%。TPG1976总体数据误差为6.4%。 项目来源:中国科学院战略性先导科技专项(A类)(XDA19070302),第二次青藏高原综合科学考察研究资助(2019QZKK0202),中国科学院“十三五”信息化建设专项资助(XXH13505-06), 国家自然科学基金项目(41530748, 91747201)。
叶庆华, 吴玉伟
本数据集是2001年青藏高原冰川数据,使用了150景Landsat7 TM/ETM+卫星多光谱遥感数据,时间主要从1999年至2002年,72%来源于2000/2001年,71%遥感数据成像于冬季。冰川数据是青藏高原净冰川覆盖范围,不包括表碛物覆盖部分。数据格式是TIFF,可以为青藏高原冰川变化、冰川水文研究提供基础数据支持。 数据内容:冰川编号FID_smglac,基于Albers等积圆锥投影计算的冰川面积area_km2,所在流域在我国冰川编目中冰川流域的二级编码code, 所在流域在我国冰川编目中冰川流域一级编码First_code,所在流域中文名称name,所在流域英文名称Ename,冰川斑块周长Peremeter(km),斑块中心点X坐标(decimal degree), 斑块中心点Y坐标(decimal degree)。 格网单元:30m 数据的投影方式:Albers等积圆锥投影。 数据加工方法:基于150景Landsat7 TM(ETM+)卫星数据,校正、镶嵌为假彩色合成影像(TM/ETM+, RGB:543),采用人工目视解译方法,参考波段比值法结果,结合SRTM DEM V4.1数据与Google Earth 同一年不同季节的影像,剔除了山体阴影、季节性积雪的影响,参考我国第一期和第二期冰川编目数据,剔除了非冰川区的陡崖、裸露基岩等,综合提取净冰川专题矢量数据,不包括冰川末端位置不清的表碛物覆盖区域,冰川边界数字化精度为半个像元(15m)。通过对比分析,可知基于多数据源、参考多方法结果、综合专家经验知识人-机互动方法提取获得的山地冰川矢量数据更准确。具体数据提取方法详见参考文献: Ye, Q., J.Zong,L.Tian et al. (2017). Glacier changes on the Tibetan Plateau derived from Landsat imagery: mid-1970s – 2000 – 2013. Journal of Glaciology,63(238), 273-87. DOI:10.1017/jog.2016.137 原始遥感资料数据精度:30m。 数据质量控制措施:冰川边界数字化精度控制在半个像元之内(15m)。 加工后数据精度:TPG2001总体数据误差在3.8%。 项目来源:中国科学院战略性先导科技专项(A类)(XDA19070302),第二次青藏高原综合科学考察研究资助(2019QZKK0202),中国科学院“十三五”信息化建设专项资助(XXH13505-06),国家自然科学基金项目(41530748, 91747201)。
叶庆华, 吴玉伟
在全球气候变暖背景下,世界范围内山地冰川消融强烈,以退缩为主,但现有野外观测发现,喀喇昆仑地区大部分冰川保持稳定或前进状态,为“喀喇昆仑异常”。冰川表面流速是研究冰川动力学和物质平衡的重要参数,研究喀喇昆仑中部区域冰川流速时空变化特征对于认识该区域冰川动力学特征及其对气候变化的响应具有重要的意义。 选取1999-2003年获取的四对Landsat 7 ETM+影像(影像获取时间分别为:1999.7.16, 2000.6.16, 2001.7.21, 2002.8.9, 2002.4.19, 2003.3.21),采用全色波段,分辨率为15 m,对每对影像进行精确配准,然后对配准后的两景影像进行互相关计算,获取1999-2003年喀喇昆仑中部区域冰川表面流速。由于研究区域内缺乏流速实地观测数据,因此利用稳定区域的偏移量值评估冰流结果的精度,冰川表面流速误差约为±7 m/year。 冰流场数据覆盖时间从1999年到2003年,时间分辨率为逐年,覆盖范围为喀喇昆仑中部区域,空间分辨率为30 m,每年的冰流场数据存放一个Geotiff文件。 数据的详细情况见喀喇昆仑中部区域冰流场-数据说明。
江利明
2008年3月30日在冰沟流域加密观测区开展的K&Ka波段机载微波辐射计的地面同步观测,为积雪微波辐射特性及参数反演,尤其是干湿雪的判别研究提供了基本数据集。 观测内容包括: 1)雪特性分析仪观测,参数包括有雪密度、雪复介电常数、雪体积含水量、雪重量含水量等,该测量在样地BG-A进行。 2)积雪参数观测,包括雪深观测、飞机过境时同步的雪表面温度观测、分层的雪深温度观测、雪粒径观测、雪密度观测。该观测分别在5个样地BG-A、BG-B、BG-F、BG-H、BG-I进行。其中BG-A测量10个点,BG-B测量6个点,BG-F测量12个点,BG-H测量21个点,BG-I测量20个点。具体测量方法和使用的仪器如下:在每一个测量点挖积雪剖面,自上而下每10cm均匀分层,如果最后剩下的深度超过10cm而不足15cm则以一层划分。分别测量每层的厚度、雪粒径、密度、温度。每层厚度有塑料直尺量出;雪粒径有手持显微镜人工读数;每一层随机测量三次;密度由每层的环刀采取雪样计算得到;温度由针式温度计测量得到,每一层积雪温度由同时测量的两个针式温度计的平均值决定。并且同时在I样地和H样地于飞机过境时同步测量雪表面温度。 该数据集包括原始数据和预处理数据2个文件夹。
白艳芬, 白云洁, 盖春梅, 顾娟, 郝晓华, 李弘毅, 李哲, 梁继, 马明国, 舒乐乐, 王建华, 王旭峰, 吴月茹, 徐瑱, 朱仕杰, 历华, 常存, 马忠国, 姜腾龙, 肖鹏峰, 刘艳, 张璞, 车涛
2007年10月17日夜间,在扁都口样方1和扁都口样方2开展了Envisat ASAR数据的地面同步观测试验。 Envisat ASAR数据为AP模式,VV/VH极化组合方式,过境时间约为23:04BJT。扁都口样方1和扁都口样方2均为3Grid×3Grid,每个Grid为30m×30m正方形,共计25个采样点(包含中心点和角点)。 与卫星过境同步,在扁都口样方1和扁都口样方2,采用Hydra probe水分仪测得土壤温度、土壤体积含水量(cm^3/cm^3)、土壤盐分(s/m)及土壤电导率(s/m);手持式红外温度计获得地表辐射温度;并采用100cm^3环刀取土经烘干获得重量含水量、土壤容重及体积含水量。同时还对植被一些参数进行了相关调查,主要包括植被高度、覆盖度、植被含水量。 本数据可为发展和验证主动微波遥感反演土壤水分及冻融状态算法及正向模型提供基本的地面数据集。
白云洁, 曹永攀, 李新, 王维真, 王旭峰
联系方式
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved
| 京公网安备11010502040845号
数据中心技术支持: 数云软件