黑河流域上游土壤容重,孔隙度,含水量,水分特征曲线,饱和导水率,颗粒分析,入渗率,以及采样点位置信息。 1、数据为2014年针对2012年补充取样,用环刀取原状土; 2、该土壤容重为土壤干容重,采用烘干法测量。将野外采集的原状环刀土样在烘箱中以105℃恒温24小时,土壤干重除以土壤体积(100立方厘米),单位:g/cm3 。 3、土壤孔隙度,根据土壤容重与土壤孔隙度的关系得到;, 4、土壤入渗分析数据集,数据为2013-2014年野外实验测量数据。 5、入渗数据是用“MINI DISK PORTABLE TENSION INFILTROMETER”进行测量,得到一定负压下的近似饱和导水率。 6、土壤粒度数据是在兰州大学西部教育部重点实验室粒度实验室进行测量。测量仪器为马尔文激光粒度仪MS2000。 7、饱和导水率是依据依艳丽(2009)的定水头发自制仪器进行测量。使用马利奥特瓶在实验过程中始终保持定水头;同时最后将当时测量的Ks转化为10℃时的Ks值进行分析计算。 8、土壤含水量数据是用ECH2O进行测量,包括5层的土壤含水量、土壤温度。 9、水分特征曲线采用离心机法测量:将野外采集的环刀原状土放入离心机,分别用转速0,310,980,1700,2190,2770,3100,5370,6930,8200,11600测量每次的转子重量得到。
查看详情新的北半球多年冻土图利用基于规则的GIS模型融合了新的多年冻土范围(Ran et al., 2021b)、气候条件、植被结构、土壤和地形条件以及富冰和富含有机质多年冻土图(yedoma)。与之前的多年冻土图不同,根据多年冻土与气候和生态系统的复杂交互作用,我们将北半球多年冻土分为五种类型:气候驱动型、气候驱动型/生态系统改造型、气候驱动型/生态系统保护型、生态系统驱动型和生态系统保护型。除去冰川和湖泊,北半球这五种类型的面积分别为3.66×106km2、8.06×106km2、0.62×106km2、5.79×106km2和1.63×106km2。北半球81%的多年冻土区受到生态系统的改造、驱动或保护,表明生态系统在北半球多年冻土稳定性中的主导作用。气候驱动的多年冻土只占北半球多年冻土区的19%,主要分布在高北极和高山地区,如青藏高原。
查看详情本数据集在评价已经有土地覆盖数据的基础上,基于证据理论,将2000年中国1:10万土地利用数据、中国植被图集(1:100万)的植被型分类、中国1:10万冰川图、中国1:100万沼泽湿地图和MOD IS 2001年土地覆盖产品(MOD12Q1)进行了融合,最终基于最大信任度原则进行决策,产生了新的、IGBP分类系统的2000年1KM中国土地覆盖数据。 新的土地覆盖数据在保持了中国土地利用数据的总体精度的同时,补充了中国植被图中对植被类型及植被季相的信息,更新了中国湿地图,增加了中国冰川图最新信息,使分类系统更加通用。
查看详情本研究基于中国及周边国家共1153个气温站点和1202个降水站点数据,利用ANUSPLIN软件的局部薄盘光滑样条法进行插值,重建了1951−2011年中国月值气温和降水量的高空间分辨率0.025°(~2.5 km)格点数据集(简称LZU0025)。数据集的质量评估主要基于以下三个方面:(1)分析ANUSPLIN在日志文件中提供的一系列用于判别误差来源和插值质量的统计参数。结果表明在1951-2011年,表征最佳插值模型的广义交叉验证GCV(generalized cross validation)值较小,在气温插值时为1.06℃,在降水进行开方运算插值时为1.97mm1/2。(2)对比LZU0025格点值与预留的265个站点实测数据。结果表明在1951-2011年,LZU0025月插值数据与实测数据接近,两者的平均绝对差为0.59℃和70.5mm,标准差为1.27℃和122.6mm,并且标准差的变化与GCV变化一致。(3)将LZU0025与现有数据集进行对比。首先以插值所用站点较多的中国气象局发布的0.5°数据集(简称CMA)为基准,利用泰勒图对比了基于不同数据集刻画的气候平均状态均值(Mean)、距离平均状态的标准差(Standard deviation)以及随时间变化的气候趋势(Time trend)。结果表明与基于其他数据集衍生的三类指标相比,LZU与基准CMA相关系数较高,标准差较接近,并且归一化的均方根误差较小。其次,将LZU0025格点数据与能量和水循环观测项目-亚洲季风项目西藏地区(CAMP-Tibet)气象站数据进行对比,结果表明仅有少数台站降水数据与LZU0025相关性不显著,但多数台站气温和降水数据与LZU0025显著相关且相关性高于0.87。基于以上评估分析,LZU0025数据集可靠。高分辨率的LZU0025能刻画更多的气候类型如喜马拉雅山脉地区未被粗分辨率数据集识别的苔原和极地气候。LZU0025可作为研究全球气候变化下区域气候变化和精准农业气候的基础数据。
查看详情青藏高原是世界上中低纬度地区冻土面积最大的地区。目前已编制了一些多年冻土分布图,但由于资料来源有限、标准不明确、验证不充分、高质量空间数据集的缺乏,使得在TP上绘制多年冻土分布图存在较大的不确定性。 本数据集基于改进的中分辨率成像光谱仪(MODIS)地表温度(LSTs)2003-2012年1km晴空MOD11A2 (Terra MODIS)和MYD11A2(Aqua MODIS)产品(reprocessing version 5)的冻融指数及冻土顶部温度(TTOP)模型模拟了多年冻土的分布,生成了青藏高原冻土图。并通过野外地面观测、土壤含水率和容重等各种调查数据对该图进行了验证。 冻土属性主要包括:季节性冻土(Seasonally frozen ground)、多年冻土(Permafrost)、非冻土区域(Unfrozen ground)。 数据集为青藏高原冻土研究提供了更详细的冻土分布资料和基础资料。
查看详情本数据集是一个包含接近36年(1983.7-2018.12)的全球高分辨率地表太阳辐射数据集,其分辨率为3小时/逐日/逐月,10公里,数据单位为W/㎡,瞬时值。该数据集可用于水文建模、地表建模和工程应用。该数据集是基于改进的物理参数化方案并以ISCCP-HXG云产品、ERA5再分析数据以及MODIS气溶胶和反照率产品为输入而生成的。验证并和其他全球卫星辐射产品比较表明,该数据集的精度通常比ISCCP-FD、GEWEX-SRB和CERES全球卫星辐射产品的精度要高。该全球辐射数据集将有助于未来地表过程模拟的研究和光伏发电的应用。
查看详情植被功能型(PFT)是根据植物种的生态系统功能及其资源利用方式而对宠大的植物种进行的组合,每一种植被功能型共享相似的植物属性,是将植物种的多样性简化为植物功能和结构的多样性。植被功能型的概念受到生态学家特别是生态系统建模者的推崇。其基本假设是全球重要的生态系统动态可以通过有限的植被功能型表达和模拟。目前,植被功能型已被广泛用于生物地理模型、生物地球化学模型、陆面过程模型和全球动态植被模型,如美国国家大气研究中心(NCAR)的陆面过程模型已经将原来用土地覆盖信息变为应用植被功能型图(Bonan et al., 2002)。植被功能型已经被用于动态全球植被模型(DGVM)中,用以预测全球变化情景下生态系统结构与功能的变化。 参考全球植被功能型分类体系,根据模型需求,将土地覆盖类型与植被功能型合并考虑,确定该数据的分类体系下表。 1、植被功能型分类体系 1 Needleleaf evergreen tree, temperate 2 Needleleaf evergreen tree, boreal 3 Needleleaf deciduous tree 4 Broadleaf evergreen tree, tropical 5 Broadleaf evergreen tree, temperate 6 Broadleaf deciduous tree, tropical 7 Broadleaf deciduous tree, temperate 8 Broadleaf deciduous tree, boreal 9 Broadleaf evergreen shrub, temperate 10 Broadleaf deciduous shrub, temperate 11 Broadleaf deciduous shrub, boreal 12 C3 grass, arctic 13 C3 grass 14 C4 grass 15 Crop 16 Permanent wetlands 17 Urban and built-up lands 18 Snow and ice 19 Barren or sparsely vegetated lands 20 Bodies of water 2、制图方法 中国1公里植被功能型图是根据Bonan等(Bonan et al., 2002)提出的土地覆盖与植被功能型转换的气候规则,对MICLCover土地覆盖图(冉有华 等,2009;Ran et al., 2012)进行转换。MICLCover土地覆盖图是融合了2000年中国1:10万土地利用数据、中国植被图集(1:100万)的植被型、中国1:10万冰川分布图、中国1:100万沼泽湿地图和MODIS 2001年土地覆盖产品(MOD12Q1)的最新发布的土地覆盖数据,采用IGBP土地覆盖分类系统。评价显示,其可能是目前存在的全国1km尺度上精度最高的土地覆盖图。气候数据利用何杰等(2010)发展的1981-2008年的空间分辨率为0.1度、时间分辨率为3小时的中国大气驱动数据,是我国现存的在全国尺度上具有最高时空分辨率的气候数据,该数据融合了Princeton 陆面模式驱动数据(Sheffield et al., 2006)、GEWEX-SRB 辐射数据(Pinker et al., 2003)、TRMM 3B42 和APHRODITE 降水数据以及中国气象局740个气象台站的观测数据。根据RanYouhua等(2010)的评价结果,GLC2000在目前的全球土地覆盖数据集中,具有相对较高的精度,且其分类系统中没有混交林这一类,因此MICLCover土地覆盖图中的混交林利用GLC2000 (Bartholome and Belward, 2005; 徐文婷 等,2005)中的信息进行了替换。该数据可用于陆面过程模型等相关研究中。
查看详情该数据集结合中国第二次编目数据、空间分辨率30米且云量覆盖度低于10%的landsat系列光学影像数据及SRTM等多种数据的基础上,利用ArcGIS,ENVI和Google Earth等处理软件,通过人工目视解译的方法提取冰川边界10km范围内的冰湖边界,并对解译后的数据进行统一的冰湖的类型、所属山脉、省域、流域等属性添加、质量检验与精度验证。空间分辨率30米。 由两部分组成,分别为利用冰川编目数据生成冰湖分布区矢量文件和2015年中国西部冰湖编目数据集。 为中国西部冰湖-冰川耦合关系、水资源利用与管理等相关研究的参考数据,还可以作为区域气候变化与冰冻圈等相关研究的基础数据。
查看详情基于青藏工程走廊现有的15个活动层厚度监测场天然孔数据资料,运用GIPL2.0冻土模型模拟了青藏工程走廊的活动层厚度现状分布图。该模型需要合成时间序列的温度数据集,按照时间跨度分为两个阶段,分别是1980-2009和2010-2015,第一阶段的温度数据来自于中国气象驱动数据集(http://dam.itpcas.ac.cn/rs/?q=data#CMFD_0.1),第二阶段的数据应用空间分变率为1km的MODIS地表温度产品(MOD11A1/A2, MYD11A1/A2)。此外,模型需要的土质类型数据来自于分辨率为1公里的中国土壤数据库(V1.1),同时还考虑了地貌,基于实测的土壤热物理参数以及土地覆盖类型等将研究区域归为88类进行了模拟。 对模拟结果和现场实测数据进行了对比,结果显示具有较好的一致性,相关系数达到0.75。在高山地区,活动层平均厚度小于2.0 m,然而在河谷地带,活动层平均厚度大于4.0 m,在高地平原区,活动层厚度通常在3.0 m -4.0 m之间。
查看详情全面估算了1132个大于1 km2湖泊的水量变化。总的来说,1976至2019年间,湖泊水储量增加了169.7±15.1 Gt(3.9±0.4 Gt yr-1),主要发生在内流区(157.6±11.6或3.7±0.3 Gt yr-1)。1976至1995年间,湖泊水量显示减少(-45.2±8.2Gt或-2.4±0.4Gt yr-1),但在1995至2019年间,大幅增加(214.9±12.7Gt或9.0±0.5Gt yr-1)。2010至2015年间,水量增速减缓(23.1±6.5 Gt或4.6±1.3 Gt yr-1),随后在2015至2019年间再次出现高值(65.7±6.7 Gt或16.4±1.7 Gt yr-1)。在1976-2019年间,冰川补给湖水量增加(127.1±14.3 Gt)远远高于非冰川补给湖(42.6±4.9 Gt),这也与冰川补给湖数量多,面积广有关。另外,封闭湖水量增幅(161.9±14.0 Gt)大大高于外流湖(7.8±5.8 Gt)。
查看详情联系方式
关注我们

时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved
|
京公网安备11010502040845号
数据中心技术支持: 数云软件