• 中国第二次冰川编目以分辨率较高的Landsat TM/ETM+遥感卫星数据为主要冰川边界提取数据源,并以最新全球数字高程模型SRTM V4为冰川属性提取数据源,采用当前国际通用的波段比值阈值分割法提取裸冰区冰川边界,开发了分冰岭提取算法提取冰川分冰岭并用于单条冰川的分割,同时采用国际通用算法计算冰川属性,从而获得了中国西部主要冰川区包含逐条冰川信息的矢量数据和属性数据。通过与部分野外GPS实地测量数据和更高分辨率遥感影像(如QuickBird、WorldView等)的对比显示,第二次中国编目中的冰川矢量数据具有较高的定位精度,能够满足国土、水利、交通、环境等领域对冰川数据的要求。 冰川编目属性:Glc_Name(冰川名称)、Drng_Code(流域编码)、FCGI_ID(第一次编目冰川编码)、GLIMS_ID(GLIMS冰川编码)、Mtn_Name(山系名称)、Pref_Name(所在行政区划)、Glc_Long(冰川经度)、Glc_Lati(冰川纬度)、Glc_Area(冰川面积)、Abs_Accu(绝对面积精度)、Rel_Accu(相对面积精度)、Deb_Area(表碛区面积)、Deb_A_Accu(表碛区面积绝对精度)、Deb_R_Accu(表碛区面积相对精度)、Glc_Vol_A(估算冰川体积1)、Glc_Vol_B(估算冰川体积2)、Max_Elev(冰川最大高程)、Min_Elev(冰川最小高程)、Mean_Elev(冰川平均高程)、MA_Elev(冰川中值面积高度)、Mean_Slp(冰川平均坡度)、Mean_Asp(冰川平均坡向)、Prm_Image(主要遥感数据)、Aux_Image(辅助遥感数据)、Rep_Date(冰川编目代表日期)、Elev_Src(高程数据源)、Elev_Date(高程代表日期)、Compiler(冰川编目编制者)、Verifier(冰川编目审验者)。 数据的详细情况见第二次冰川编目-数据说明。

    查看详情
  • 植被功能型(PFT)是根据植物种的生态系统功能及其资源利用方式而对宠大的植物种进行的组合,每一种植被功能型共享相似的植物属性,是将植物种的多样性简化为植物功能和结构的多样性。植被功能型的概念受到生态学家特别是生态系统建模者的推崇。其基本假设是全球重要的生态系统动态可以通过有限的植被功能型表达和模拟。目前,植被功能型已被广泛用于生物地理模型、生物地球化学模型、陆面过程模型和全球动态植被模型,如美国国家大气研究中心(NCAR)的陆面过程模型已经将原来用土地覆盖信息变为应用植被功能型图(Bonan et al., 2002)。植被功能型已经被用于动态全球植被模型(DGVM)中,用以预测全球变化情景下生态系统结构与功能的变化。 参考全球植被功能型分类体系,根据模型需求,将土地覆盖类型与植被功能型合并考虑,确定该数据的分类体系下表。 1、植被功能型分类体系 1 Needleleaf evergreen tree, temperate 2 Needleleaf evergreen tree, boreal 3 Needleleaf deciduous tree 4 Broadleaf evergreen tree, tropical 5 Broadleaf evergreen tree, temperate 6 Broadleaf deciduous tree, tropical 7 Broadleaf deciduous tree, temperate 8 Broadleaf deciduous tree, boreal 9 Broadleaf evergreen shrub, temperate 10 Broadleaf deciduous shrub, temperate 11 Broadleaf deciduous shrub, boreal 12 C3 grass, arctic 13 C3 grass 14 C4 grass 15 Crop 16 Permanent wetlands 17 Urban and built-up lands 18 Snow and ice 19 Barren or sparsely vegetated lands 20 Bodies of water 2、制图方法 中国1公里植被功能型图是根据Bonan等(Bonan et al., 2002)提出的土地覆盖与植被功能型转换的气候规则,对MICLCover土地覆盖图(冉有华 等,2009;Ran et al., 2012)进行转换。MICLCover土地覆盖图是融合了2000年中国1:10万土地利用数据、中国植被图集(1:100万)的植被型、中国1:10万冰川分布图、中国1:100万沼泽湿地图和MODIS 2001年土地覆盖产品(MOD12Q1)的最新发布的土地覆盖数据,采用IGBP土地覆盖分类系统。评价显示,其可能是目前存在的全国1km尺度上精度最高的土地覆盖图。气候数据利用何杰等(2010)发展的1981-2008年的空间分辨率为0.1度、时间分辨率为3小时的中国大气驱动数据,是我国现存的在全国尺度上具有最高时空分辨率的气候数据,该数据融合了Princeton 陆面模式驱动数据(Sheffield et al., 2006)、GEWEX-SRB 辐射数据(Pinker et al., 2003)、TRMM 3B42 和APHRODITE 降水数据以及中国气象局740个气象台站的观测数据。根据RanYouhua等(2010)的评价结果,GLC2000在目前的全球土地覆盖数据集中,具有相对较高的精度,且其分类系统中没有混交林这一类,因此MICLCover土地覆盖图中的混交林利用GLC2000 (Bartholome and Belward, 2005; 徐文婷 等,2005)中的信息进行了替换。该数据可用于陆面过程模型等相关研究中。

    查看详情
  • 该数据集主要包括北温带湖泊在1985-2020年间4个时段的结冰观测频率值(ICO),以及湖泊所在位置、面积、高程等信息。其中,4个时间段分别为1985-1998(P1)、1999-2006(P2)、2007-2014(P3)以及2015-2020(P4),目的是提高计算时段内的“有效观测”次数,进而提高准确度。4个时段的ICO由各个时段内所有Landsat影像统计的“结冰”次数与“有效观测”次数的比值计算,其他的湖泊信息通过表格中的“Hylak_id”列与HydroLAKEs数据集相对应。此外,该数据仅保留了P1-P4均观测有效,且面积大于1平方千米的湖泊,约为3万个。该数据集可以反映近几十年来湖泊结冰情况对气候变化的响应。(详见论文)

    查看详情
  • 地表温度作为地表能量平衡中的主要参数,表征了地气间能量和水分交换的程度,广泛应用于气候学、水文学和生态学等的研究中。 在冻土研究中,气候是冻土存在和发展的决定性因素之一,其中地表温度是影响冻土分布的主要气候因子,其影响冻土发生发育以及分布,是冻土建模的上边界条件,对寒区水文过程的研究具有重要的意义。 数据集基于青藏高原工程走廊DEM及观测站资料分析了青藏高原2000-2014地表温度变化趋势。利用MODIS上下午星Terra和Aqua的地表温度数据产品MOD11A1/A2、MYD11A1/A2,基于影像时空信息对云覆盖像元下地表温度信息进行了重建,采用昆仑山(湿地、草原)、北麓河(草原、草甸)、开心岭(草甸、草原)、唐古拉山(草甸、湿地)8个站点对重建信息及地表温度代表性问题进行了分析,通过相关性系数(R2)、均方根误差(RMSE)、平均绝对误差(MAE)和平均偏差(MBE)验证指标得出:(1)基于时空信息的MODIS云覆盖像元下地表温度重建精度较高;(2)上下午星Terra和Aqua四次观测加权平均代表性最好。 基于MODIS地表温度信息重建及代表性问题的分析,获取了青藏高原及其工程走廊带2000-2010年年均MODIS地表温度数据。 可以看出2000-2010年地表温度也在经历着波动的增温趋势,这与青藏高原以及青藏工程走廊多年冻土段气候变化保持基本相同的变化趋势。

    查看详情
  • GAME/ Tibet 项目于1997 年夏季在安多(Amdo) 站作过短期预试验观测( PIOP) 。1998 年5~9 月, 安排了连续5 个加强观测期( IOP) , 每个IOP 约一个月。中、日、韩三国80 余名科学工作者分批赴青藏高原,进行了艰苦而卓有成效的工作。 各项观测试验计划顺利完成。并且从1998 年9 月加强观测结束后,5 个自动气象站(AWS) 、1 个自动气象综合观测站( PAM) 、1 个边界层塔及辐射综合观测站(Amdo) 及9 个土壤温度和湿度观测站一直连续观测至今, 取得了连续8 年零6 个月(从1997 年6 月开始) 极其珍贵的资料。 试验区设在藏北那曲地区的一个150 km ×200 km 的区域内(图1),同时在青藏公路沿线的D66,沱沱河和唐古拉山口(D105) 也建立了观测点。包括高原草甸、高原湖泊、荒漠化草原等不同下垫面上, 设置了以下观测站(点):(1) 两个包括大气和土壤的多学科综合观测站:安多(Amdo) 和那曲(NaquFx) 。这两个站含有多分量辐射观测系统、梯度观测塔、湍流通量直测系统、土壤温湿度梯度观测、无线电探空以及作为卫星资料地面真值利用的地面土壤湿度观测网和多角度光谱仪观测等;(2) 6 个自动气象站(D66 、沱沱河、D105 、D110 、Naqu 和MS3608) 。每个测站都有风、温、湿、压、辐射、地表温度、土壤温湿度和降水等观测;(3) 设在那曲北和南各约80 km 处的PAM( Portable Automated Meso - net) 站(MS3478和MS3637) 有类似于上述两个综合观测站(Amdo和NaquFx) 的主要项目, 同时有风、温、湿的湍流观测;(4) 9 个土壤温度和湿度观测点(D66 、沱沱河、D110 、WADD、NODA、Amdo 、MS3478、MS3478和MS3637) , 每个测站都包含有6 层土壤温度和9 层土壤湿度测量;(5) 一个设在那曲以南的三维多普勒雷达站和邻近(约100 km) 区域内的7 个加密雨量站( Precipitation gauge) , 辐射观测系统主要研究高原云与降水系统, 并作为TRMM 卫星一个地面真值站。 GAME-Tibet项目力求通过不同空间尺度的加强观测试验和长期监测,深入了解青藏高原的地气相互作用以及对亚洲季风系统的影响。 GAME/ Tibet 项目2000 年结束后, 已加入GEWEX(全球能量和水循环试验) 与CL IVAR (气候变化和预测) 两个大型国际计划联合组织的“全球协调加强观测计划(CEOP) ”, 开始执行“全球协调加强观测计划(CEOP) 亚澳季风之青藏高原试验研究”(CAMP/ Tibet ) 数据内容分为Prephase Observation Preriod (POP)1997年和IOP1998年 一、POP1997年数据内容: 1、Precipitation Guage Network (PGN) 2、Radiosonde Observation at Naqu 3、Analysis of Stable Isotope for Water Cycle Studies 4、Doppler radar observation 5、Large-Scale Hydrological Cycle in Tibet (Link to Numaguchi's home page) 6、Portable Automated Mesonet (PAM) [Japanese] 7、Ground Truth Data Collection(GTDC) for Satellite Remote Sensing 8、Tanggula AWS ( D105 station in Tibet ) 9、Syamboche AWS (GEN/GAME AWS in Nepal) 二、IOP1998年数据内容: 1、Anduo (1)PBL Tower 、(2)Radiation 、(3)Turbulence SMTMS 2、D66 (1)AWS (2)SMTMS (3)GTDC(4)Precipitation 3、Toutouhe (1)AWS(2)SMTMS(3)GTDC 4、D110 (1)AWS (2)SMTMS (3)GTDC(4)SMTMS 5、MS3608 (1)AWS (2)SMTMS (3)Precipitation 6、D105 (1)Precipitation (2)GTDC 7、MS3478(NPAM) (1)PAM (2)Precipitation 8、 MS3637 (1)PAM (2)SMTMS (3)Precipitation 9、NODAA (1)SMTMS (2)Precipitation 10、WADD (1)SMTMS (2)Precipitation (3)Barometricmd 11、AQB (1)Precipitation 12、Dienpa( RS2 ) (1)Precipitation 13、Zuri (1)Precipitation(2)Barometricmd 14、Juze (1)Precipitation 15、Naqu hydrological station (1)Precipitation 16、MSofNaqu(1)Barometricmd 16、Naquradarsite (1)Radarsystem(2)Precipitation 17、Syangboche[Nepal](1)AWS 18、Shiqu-anhe(1)AWS(2)GTDC 19、Seqin-Xiang(1)Barometricmd 20、NODA(1)Barometricmd(2)Precipitation(3)SMTMS 21、NaquHY(1)Barometricmd(2)Precipitation 22、NaquFx(BJ)(1)GTDC(2)PBLmd(3)Precipitation 23、MS3543(1)Precipitation 24、MNofAmdo(1)Barometricmd 25、Mardi(1)Runoff 26、Gaize(1)AWS(2)GTDC(3)Sonde

    查看详情
  • 基于青藏工程走廊现有的15个活动层厚度监测场天然孔数据资料,运用GIPL2.0冻土模型模拟了青藏工程走廊的活动层厚度现状分布图。该模型需要合成时间序列的温度数据集,按照时间跨度分为两个阶段,分别是1980-2009和2010-2015,第一阶段的温度数据来自于中国气象驱动数据集(http://dam.itpcas.ac.cn/rs/?q=data#CMFD_0.1),第二阶段的数据应用空间分变率为1km的MODIS地表温度产品(MOD11A1/A2, MYD11A1/A2)。此外,模型需要的土质类型数据来自于分辨率为1公里的中国土壤数据库(V1.1),同时还考虑了地貌,基于实测的土壤热物理参数以及土地覆盖类型等将研究区域归为88类进行了模拟。 对模拟结果和现场实测数据进行了对比,结果显示具有较好的一致性,相关系数达到0.75。在高山地区,活动层平均厚度小于2.0 m,然而在河谷地带,活动层平均厚度大于4.0 m,在高地平原区,活动层厚度通常在3.0 m -4.0 m之间。

    查看详情
  • 青藏高原流域边界数据集使用2000年的航天飞机雷达地形任务收集的干涉合成孔径雷达SRTM DEM 数据、参考河流、湖泊等水系辅助数据,利用arcgis水文模型,分析、提取河网,将青藏高原划分为AmuDayra、Brahmaputra、Ganges、Hexi、Indus、Inner、Mekong、Qaidam、Salween、Tarim、Yangtze、Yellow等12个子流域。其中研究区外围边界是基于2500米等高线。

    查看详情
  • 本数据来源于全国地理信息资源目录服务系统中1:100万全国基础地理数据库,由国家基础地理信息中心于2017年11月份开始免费向公众提供。我们将青藏高原作为一个整体进行了拼接融合、裁切,以便于青藏高原研究中的使用。数据现势性为2017年。 本数据集为青藏高原1:100万行政边界,包括行政国界线(National_Tibet_line)、省界(Province_Tibet),市(州)界(City_Tibet)县界图层(County_Tibet_poly)和县界线图层(County_Tibet_line)。 行政境界面图层(County_Tibet_poly)属性项名称及定义: 属性项 描述 填写实例 PAC 行政区划代码 513230 NAME 名称 县界名称 行政边界线图层(BOUL)属性项名称及定义: 属性项 描述 填写实例 GB 国标分类码 630200 行政边界线图层(County_Tibet_line)属性项含义: 属性项 代码 描述 GB 630200 省级界线 GB 640200 地、市、州级行政区界 GB 650201 县级行政区界(已定)

    查看详情
  • 新的北半球多年冻土图利用基于规则的GIS模型融合了新的多年冻土范围(Ran et al., 2021b)、气候条件、植被结构、土壤和地形条件以及富冰和富含有机质多年冻土图(yedoma)。与之前的多年冻土图不同,根据多年冻土与气候和生态系统的复杂交互作用,我们将北半球多年冻土分为五种类型:气候驱动型、气候驱动型/生态系统改造型、气候驱动型/生态系统保护型、生态系统驱动型和生态系统保护型。除去冰川和湖泊,北半球这五种类型的面积分别为3.66×106km2、8.06×106km2、0.62×106km2、5.79×106km2和1.63×106km2。北半球81%的多年冻土区受到生态系统的改造、驱动或保护,表明生态系统在北半球多年冻土稳定性中的主导作用。气候驱动的多年冻土只占北半球多年冻土区的19%,主要分布在高北极和高山地区,如青藏高原。

    查看详情
  • 本数据集来源于论文: Yao, T., Thompson, L., & Yang, W. (2012). Different glacier status with atmospheric circulations in tibetan plateau and surroundings. Nature Climate Change, 1580, 1-5.,数据整理自论文内Supplementary information中的表格数据。 此论文通过对82条冰川退缩、7090条冰川面积减少和15条冰川质量平衡变化的调查,总结了近30年来的冰川状况。 数据集包含8个数据表,数据表名称和内容分别为: Data list:数据列表; t1:Distribution of Glaciers in the TP and surroundings(青藏高原及周边地区冰川分布面积); t2:Data and method for analyzing glacial area reduction in each basin(分析各流域冰川面积减少的数据和方法列表); t3:Glacial area reduction during the past three decades from remote sensing images in the TP and surroundings(基于遥感影像得出的青藏高原及周边地区过去30年中冰川面积减少情况); t4:Glacial length fluctuationin the TP and surroundings in the past three decades(青藏高原及周边地区过去30年中冰川长度波动数据); t5:Detailed information on the glaciers for recent mass balance measurement in the TP and surroundings(青藏高原及周边地区近年来冰川质量平衡测量方法的详细信息); t6:Recent annual mass balances in different regions in the TP(青藏高原不同区域近年来每年质量平衡数据); t7:Mass balance of Long-time series for the Qiyi, Xiaodongkemadi and Kangwure Glaciers in the TP(青藏高原七一冰川,小冬克玛底冰川和抗物热冰川质量平衡长时间序列数据)。 数据详细信息参见附件:Supplementary information.pdf,Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings.pdf。

    查看详情